之前我们分析了引用计数kref,总结了sysfs提供的API,并翻译了介绍kobject原理及用法的文档。应该说准备工作做得足够多,kobject的实现怎么都可以看懂了,甚至只需要总结下API就行了。可我还是决定把kobject的实现代码从头分析一遍。一是因为kobject的代码很重要,会在设备驱动模型代码中无数次被用到,如果不熟悉的话可以说是举步维艰。二是为了熟悉linux的编码风格,为以后分析更大规模的代码奠定基础。
kobject的头文件在include/linux/kobject.h,实现在lib/kobject.c。闲话少说,上代码。
- struct kobject {
- const char *name;
- struct list_head entry;
- struct kobject *parent;
- struct kset *kset;
- struct kobj_type *ktype;
- struct sysfs_dirent *sd;
- struct kref kref;
- unsigned int state_initialized:1;
- unsigned int state_in_sysfs:1;
- unsigned int state_add_uevent_sent:1;
- unsigned int state_remove_uevent_sent:1;
- unsigned int uevent_suppress:1;
- };
在struct kobject中,name是名字,entry是用于kobject所属kset下的子kobject链表,parent指向kobject的父节点,kset指向kobject所属的kset,ktype定义了kobject所属的类型,sd指向kobject对应的sysfs目录,kref记录kobject的引用计数,之后是一系列标志。
- struct kobj_type {
- void (*release)(struct kobject *kobj);
- struct sysfs_ops *sysfs_ops;
- struct attribute **default_attrs;
- };
struct kobj_type就是定义了kobject的公共类型,其中既有操作的函数,也有公共的属性。其中release()是在kobject释放时调用的,sysfs_ops中定义了读写属性文件时调用的函数。default_attrs中定义了这类kobject公共的属性。
- struct kset {
- struct list_head list;
- spinlock_t list_lock;
- struct kobject kobj;
- struct kset_uevent_ops *uevent_ops;
- };
struct kset可以看成在kobject上的扩展,它包含一个kobject的链表,可以方便地表示sysfs中目录与子目录的关系。其中,list是所属kobject的链表头,list_lock用于在访问链表时加锁,kobj是kset的内部kobject,要表现为sysfs中的目录就必须拥有kobject的功能,最后的kset_uevent_ops定义了对发往用户空间的uevent的处理。我对uevent不了解,会尽量忽略。
- struct kobj_attribute {
- struct attribute attr;
- ssize_t (*show)(struct kobject *kobj, struct kobj_attribute *attr,
- char *buf);
- ssize_t (*store)(struct kobject *kobj, struct kobj_attribute *attr,
- const char *buf, size_t count);
- };
struct kobj_attribute是kobject在attribute上做出的扩展,添加了两个专门读写kobject属性的函数。无论是kobject,还是kset(说到底是kset内部的kobject),都提供了使用kobj_attribute的快速创建方法。
结构差不多介绍完了,下面看看实现。我所知道的代码分析风格,喜欢自顶向下的方式,从一个函数开始,介绍出一个函数调用树。在代码量很大,涉及调用层次很深的时候,确实要采用这种打洞的方式来寻找突破口。但这种自顶向下的方式有两个问题:一是很容易迷失,二是代码分析的难度会逐渐增大而不是减小。在茫茫的代码中,你一头下去,周围都是你不认识的函数,一个函数里调用了三个陌生的函数,其中一个陌生的函数又调用了五个更陌生的函数...不久你就会产生很强的挫败感。这就像走在沙漠上,你不知道终点在哪,也许翻过一个沙丘就到了,也许还有无数个沙丘。而且在这种分析时,人是逐渐走向细节,容易被细节所困扰,忽略了整体的印象与代码的层次感。所以,我觉得在分析代码时,也可以采用自底向上的方式,从细小的、内部使用的函数,到比较宏观的、供外部调用的函数。而且按照这种顺序来看代码,基本就是文件从头读到尾的顺序,也比较符合写代码的流程。linux代码喜欢在文件开始处攒内部静态函数,攒到一定程度爆发,突然实现几个外部API,然后再攒,再实现。而且之前的内部静态函数会反复调用到。linux代码写得很有层次感,除了内外有别,还把意思相近的,或者功能刚好相反的,或者使用时顺序调用的函数放在一起,很便于阅读。闲话少说,等你看完kobject的实现自然就清楚了。
- static int populate_dir(struct kobject *kobj)
- {
- struct kobj_type *t = get_ktype(kobj);
- struct attribute *attr;
- int error = 0;
- int i;
-
- if (t && t->default_attrs) {
- for (i = 0; (attr = t->default_attrs[i]) != NULL; i++) {
- error = sysfs_create_file(kobj, attr);
- if (error)
- break;
- }
- }
- return error;
- }
-
- static int create_dir(struct kobject *kobj)
- {
- int error = 0;
- if (kobject_name(kobj)) {
- error = sysfs_create_dir(kobj);
- if (!error) {
- error = populate_dir(kobj);
- if (error)
- sysfs_remove_dir(kobj);
- }
- }
- return error;
- }
create_dir()在sysfs中创建kobj对应的目录,populate_dir()创建kobj中默认属性对应的文件。create_dir()正是调用populate_dir()实现的。
- static int get_kobj_path_length(struct kobject *kobj)
- {
- int length = 1;
- struct kobject *parent = kobj;
-
-
-
-
-
- do {
- if (kobject_name(parent) == NULL)
- return 0;
- length += strlen(kobject_name(parent)) + 1;
- parent = parent->parent;
- } while (parent);
- return length;
- }
-
- static void fill_kobj_path(struct kobject *kobj, char *path, int length)
- {
- struct kobject *parent;
-
- --length;
- for (parent = kobj; parent; parent = parent->parent) {
- int cur = strlen(kobject_name(parent));
-
- length -= cur;
- strncpy(path + length, kobject_name(parent), cur);
- *(path + --length) = '/';
- }
-
- pr_debug("kobject: '%s' (%p): %s: path = '%s'\n", kobject_name(kobj),
- kobj, __func__, path);
- }
-
-
-
-
-
-
-
-
-
- char *kobject_get_path(struct kobject *kobj, gfp_t gfp_mask)
- {
- char *path;
- int len;
-
- len = get_kobj_path_length(kobj);
- if (len == 0)
- return NULL;
- path = kzalloc(len, gfp_mask);
- if (!path)
- return NULL;
- fill_kobj_path(kobj, path, len);
-
- return path;
- }
前面两个是内部函数,get_kobj_path_length()获得kobj路径名的长度,fill_kobj_path()把kobj路径名填充到path缓冲区中。
kobject_get_path()靠两个函数获得kobj的路径名,从攒函数到爆发一气呵成。
- static void kobj_kset_join(struct kobject *kobj)
- {
- if (!kobj->kset)
- return;
-
- kset_get(kobj->kset);
- spin_lock(&kobj->kset->list_lock);
- list_add_tail(&kobj->entry, &kobj->kset->list);
- spin_unlock(&kobj->kset->list_lock);
- }
-
-
- static void kobj_kset_leave(struct kobject *kobj)
- {
- if (!kobj->kset)
- return;
-
- spin_lock(&kobj->kset->list_lock);
- list_del_init(&kobj->entry);
- spin_unlock(&kobj->kset->list_lock);
- kset_put(kobj->kset);
- }
kobj_kset_join()把kobj加入kobj->kset的链表中,kobj_kset_leave()把kobj从kobj->kset的链表中去除,两者功能相对。
- static void kobject_init_internal(struct kobject *kobj)
- {
- if (!kobj)
- return;
- kref_init(&kobj->kref);
- INIT_LIST_HEAD(&kobj->entry);
- kobj->state_in_sysfs = 0;
- kobj->state_add_uevent_sent = 0;
- kobj->state_remove_uevent_sent = 0;
- kobj->state_initialized = 1;
- }
-
-
- static int kobject_add_internal(struct kobject *kobj)
- {
- int error = 0;
- struct kobject *parent;
-
- if (!kobj)
- return -ENOENT;
-
- if (!kobj->name || !kobj->name[0]) {
- WARN(1, "kobject: (%p): attempted to be registered with empty "
- "name!\n", kobj);
- return -EINVAL;
- }
-
- parent = kobject_get(kobj->parent);
-
-
- if (kobj->kset) {
- if (!parent)
- parent = kobject_get(&kobj->kset->kobj);
- kobj_kset_join(kobj);
- kobj->parent = parent;
- }
-
- pr_debug("kobject: '%s' (%p): %s: parent: '%s', set: '%s'\n",
- kobject_name(kobj), kobj, __func__,
- parent ? kobject_name(parent) : "<NULL>",
- kobj->kset ? kobject_name(&kobj->kset->kobj) : "<NULL>");
-
- error = create_dir(kobj);
- if (error) {
- kobj_kset_leave(kobj);
- kobject_put(parent);
- kobj->parent = NULL;
-
-
- if (error == -EEXIST)
- printk(KERN_ERR "%s failed for %s with "
- "-EEXIST, don't try to register things with "
- "the same name in the same directory.\n",
- __func__, kobject_name(kobj));
- else
- printk(KERN_ERR "%s failed for %s (%d)\n",
- __func__, kobject_name(kobj), error);
- dump_stack();
- } else
- kobj->state_in_sysfs = 1;
-
- return error;
- }
kobject_init_internal()初始化kobj。
kobject_add_internal()把kobj加入已有的结构。
这两个函数看似无关,实际很有关系。在kobject中有好几个结构变量,但重要的只有两个,一个是kset,一个是parent。这两个都是表示当前kobject在整个体系中的位置,决不能自行决定,需要外部参与设置。那把kobject创建的过程分为init和add两个阶段也就很好理解了。kobject_init_internal()把一些能自动初始化的结构变量初始化掉,等外界设置了parent和kset,再调用kobject_add_internal()把kobject安在适当的位置,并创建相应的sysfs目录及文件。
- int kobject_set_name_vargs(struct kobject *kobj, const char *fmt,
- va_list vargs)
- {
- const char *old_name = kobj->name;
- char *s;
-
- if (kobj->name && !fmt)
- return 0;
-
- kobj->name = kvasprintf(GFP_KERNEL, fmt, vargs);
- if (!kobj->name)
- return -ENOMEM;
-
-
- while ((s = strchr(kobj->name, '/')))
- s[0] = '!';
-
- kfree(old_name);
- return 0;
- }
-
-
-
-
-
-
-
-
-
-
- int kobject_set_name(struct kobject *kobj, const char *fmt, ...)
- {
- va_list vargs;
- int retval;
-
- va_start(vargs, fmt);
- retval = kobject_set_name_vargs(kobj, fmt, vargs);
- va_end(vargs);
-
- return retval;
- }
kobject_set_name()是设置kobj名称的,它又调用kobject_set_name_vargs()实现。但要注意,这个kobject_set_name()仅限于kobject添加到体系之前,因为它只是修改了名字,并未通知用户空间。
- void kobject_init(struct kobject *kobj, struct kobj_type *ktype)
- {
- char *err_str;
-
- if (!kobj) {
- err_str = "invalid kobject pointer!";
- goto error;
- }
- if (!ktype) {
- err_str = "must have a ktype to be initialized properly!\n";
- goto error;
- }
- if (kobj->state_initialized) {
-
- printk(KERN_ERR "kobject (%p): tried to init an initialized "
- "object, something is seriously wrong.\n", kobj);
- dump_stack();
- }
-
- kobject_init_internal(kobj);
- kobj->ktype = ktype;
- return;
-
- error:
- printk(KERN_ERR "kobject (%p): %s\n", kobj, err_str);
- dump_stack();
- }
kobject_init()就是调用kobject_init_internal()自动初始化了一些结构变量,然后又设置了ktype。其实这个ktype主要是管理一些默认属性什么的,只要在kobject_add_internal()调用create_dir()之前设置就行,之所以会出现在kobject_init()中,完全是为了与后面的kobject_create()相对比。
- static int kobject_add_varg(struct kobject *kobj, struct kobject *parent,
- const char *fmt, va_list vargs)
- {
- int retval;
-
- retval = kobject_set_name_vargs(kobj, fmt, vargs);
- if (retval) {
- printk(KERN_ERR "kobject: can not set name properly!\n");
- return retval;
- }
- kobj->parent = parent;
- return kobject_add_internal(kobj);
- }
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- int kobject_add(struct kobject *kobj, struct kobject *parent,
- const char *fmt, ...)
- {
- va_list args;
- int retval;
-
- if (!kobj)
- return -EINVAL;
-
- if (!kobj->state_initialized) {
- printk(KERN_ERR "kobject '%s' (%p): tried to add an "
- "uninitialized object, something is seriously wrong.\n",
- kobject_name(kobj), kobj);
- dump_stack();
- return -EINVAL;
- }
- va_start(args, fmt);
- retval = kobject_add_varg(kobj, parent, fmt, args);
- va_end(args);
-
- return retval;
- }
kobject_add()把kobj添加到体系中。但它还有一个附加功能,设置kobj的名字。parent也是作为参数传进来的,至于为什么kset没有同样传进来,或许是历史遗留原因吧。
- int kobject_init_and_add(struct kobject *kobj, struct kobj_type *ktype,
- struct kobject *parent, const char *fmt, ...)
- {
- va_list args;
- int retval;
-
- kobject_init(kobj, ktype);
-
- va_start(args, fmt);
- retval = kobject_add_varg(kobj, parent, fmt, args);
- va_end(args);
-
- return retval;
- }
kobject_init_and_add()虽然是kobject_init()和kobject_add()的合并,但并不常用,因为其中根本没留下设置kset的空挡,这无疑不太合适。
- int kobject_rename(struct kobject *kobj, const char *new_name)
- {
- int error = 0;
- const char *devpath = NULL;
- const char *dup_name = NULL, *name;
- char *devpath_string = NULL;
- char *envp[2];
-
- kobj = kobject_get(kobj);
- if (!kobj)
- return -EINVAL;
- if (!kobj->parent)
- return -EINVAL;
-
- devpath = kobject_get_path(kobj, GFP_KERNEL);
- if (!devpath) {
- error = -ENOMEM;
- goto out;
- }
- devpath_string = kmalloc(strlen(devpath) + 15, GFP_KERNEL);
- if (!devpath_string) {
- error = -ENOMEM;
- goto out;
- }
- sprintf(devpath_string, "DEVPATH_OLD=%s", devpath);
- envp[0] = devpath_string;
- envp[1] = NULL;
-
- name = dup_name = kstrdup(new_name, GFP_KERNEL);
- if (!name) {
- error = -ENOMEM;
- goto out;
- }
-
- error = sysfs_rename_dir(kobj, new_name);
- if (error)
- goto out;
-
-
- dup_name = kobj->name;
- kobj->name = name;
-
-
-
-
- kobject_uevent_env(kobj, KOBJ_MOVE, envp);
-
- out:
- kfree(dup_name);
- kfree(devpath_string);
- kfree(devpath);
- kobject_put(kobj);
-
- return error;
- }
kobject_rename()就是在kobj已经添加到系统之后,要改名字时调用的函数。它除了完成kobject_set_name()的功能,还向用户空间通知这一消息。
- int kobject_move(struct kobject *kobj, struct kobject *new_parent)
- {
- int error;
- struct kobject *old_parent;
- const char *devpath = NULL;
- char *devpath_string = NULL;
- char *envp[2];
-
- kobj = kobject_get(kobj);
- if (!kobj)
- return -EINVAL;
- new_parent = kobject_get(new_parent);
- if (!new_parent) {
- if (kobj->kset)
- new_parent = kobject_get(&kobj->kset->kobj);
- }
-
- devpath = kobject_get_path(kobj, GFP_KERNEL);
- if (!devpath) {
- error = -ENOMEM;
- goto out;
- }
- devpath_string = kmalloc(strlen(devpath) + 15, GFP_KERNEL);
- if (!devpath_string) {
- error = -ENOMEM;
- goto out;
- }
- sprintf(devpath_string, "DEVPATH_OLD=%s", devpath);
- envp[0] = devpath_string;
- envp[1] = NULL;
- error = sysfs_move_dir(kobj, new_parent);
- if (error)
- goto out;
- old_parent = kobj->parent;
- kobj->parent = new_parent;
- new_parent = NULL;
- kobject_put(old_parent);
- kobject_uevent_env(kobj, KOBJ_MOVE, envp);
- out:
- kobject_put(new_parent);
- kobject_put(kobj);
- kfree(devpath_string);
- kfree(devpath);
- return error;
- }
kobject_move()则是在kobj添加到系统后,想移动到新的parent kobject下所调用的函数。在通知用户空间上,与kobject_rename()调用的是同一操作。
- void kobject_del(struct kobject *kobj)
- {
- if (!kobj)
- return;
-
- sysfs_remove_dir(kobj);
- kobj->state_in_sysfs = 0;
- kobj_kset_leave(kobj);
- kobject_put(kobj->parent);
- kobj->parent = NULL;
- }
kobject_del()仅仅是把kobj从系统中退出,相对于kobject_add()操作。
-
-
-
-
- struct kobject *kobject_get(struct kobject *kobj)
- {
- if (kobj)
- kref_get(&kobj->kref);
- return kobj;
- }
-
-
-
-
-
- static void kobject_cleanup(struct kobject *kobj)
- {
- struct kobj_type *t = get_ktype(kobj);
- const char *name = kobj->name;
-
- pr_debug("kobject: '%s' (%p): %s\n",
- kobject_name(kobj), kobj, __func__);
-
- if (t && !t->release)
- pr_debug("kobject: '%s' (%p): does not have a release() "
- "function, it is broken and must be fixed.\n",
- kobject_name(kobj), kobj);
-
-
- if (kobj->state_add_uevent_sent && !kobj->state_remove_uevent_sent) {
- pr_debug("kobject: '%s' (%p): auto cleanup 'remove' event\n",
- kobject_name(kobj), kobj);
- kobject_uevent(kobj, KOBJ_REMOVE);
- }
-
-
- if (kobj->state_in_sysfs) {
- pr_debug("kobject: '%s' (%p): auto cleanup kobject_del\n",
- kobject_name(kobj), kobj);
- kobject_del(kobj);
- }
-
- if (t && t->release) {
- pr_debug("kobject: '%s' (%p): calling ktype release\n",
- kobject_name(kobj), kobj);
- t->release(kobj);
- }
-
-
- if (name) {
- pr_debug("kobject: '%s': free name\n", name);
- kfree(name);
- }
- }
-
- static void kobject_release(struct kref *kref)
- {
- kobject_cleanup(container_of(kref, struct kobject, kref));
- }
-
-
-
-
-
-
-
- void kobject_put(struct kobject *kobj)
- {
- if (kobj) {
- if (!kobj->state_initialized)
- WARN(1, KERN_WARNING "kobject: '%s' (%p): is not "
- "initialized, yet kobject_put() is being "
- "called.\n", kobject_name(kobj), kobj);
- kref_put(&kobj->kref, kobject_release);
- }
- }
kobject_get()和kobject_put()走的完全是引用计数的路线。kobject_put()会在引用计数降为零时撤销整个kobject的存在:向用户空间发生REMOVE消息,从sysfs中删除相应目录,调用kobj_type中定义的release函数,释放name所占的空间。
看看前面介绍的API。
- int kobject_set_name(struct kobject *kobj, const char *name, ...)
- __attribute__((format(printf, 2, 3)));
- int kobject_set_name_vargs(struct kobject *kobj, const char *fmt,
- va_list vargs);
- void kobject_init(struct kobject *kobj, struct kobj_type *ktype);
- int __must_check kobject_add(struct kobject *kobj,
- struct kobject *parent,
- const char *fmt, ...);
- int __must_check kobject_init_and_add(struct kobject *kobj,
- struct kobj_type *ktype,
- struct kobject *parent,
- const char *fmt, ...);
- void kobject_del(struct kobject *kobj);
-
- int __must_check kobject_rename(struct kobject *, const char *new_name);
- int __must_check kobject_move(struct kobject *, struct kobject *);
-
- struct kobject *kobject_get(struct kobject *kobj);
- void kobject_put(struct kobject *kobj);
-
- char *kobject_get_path(struct kobject *kobj, gfp_t flag);
基本上概扩了kobject从创建到删除,包括中间改名字,改位置,以及引用计数的变动。
当然,kobject创建仍比较麻烦,因为ktype需要自己写。下面就是kobject提供的一种快速创建方法。
- static ssize_t kobj_attr_show(struct kobject *kobj, struct attribute *attr,
- char *buf)
- {
- struct kobj_attribute *kattr;
- ssize_t ret = -EIO;
-
- kattr = container_of(attr, struct kobj_attribute, attr);
- if (kattr->show)
- ret = kattr->show(kobj, kattr, buf);
- return ret;
- }
-
- static ssize_t kobj_attr_store(struct kobject *kobj, struct attribute *attr,
- const char *buf, size_t count)
- {
- struct kobj_attribute *kattr;
- ssize_t ret = -EIO;
-
- kattr = container_of(attr, struct kobj_attribute, attr);
- if (kattr->store)
- ret = kattr->store(kobj, kattr, buf, count);
- return ret;
- }
-
- struct sysfs_ops kobj_sysfs_ops = {
- .show = kobj_attr_show,
- .store = kobj_attr_store,
- };
-
- static void dynamic_kobj_release(struct kobject *kobj)
- {
- pr_debug("kobject: (%p): %s\n", kobj, __func__);
- kfree(kobj);
- }
-
- static struct kobj_type dynamic_kobj_ktype = {
- .release = dynamic_kobj_release,
- .sysfs_ops = &kobj_sysfs_ops,
- };
这个就是kobject自身提供的一种kobj_type,叫做dynamic_kobj_ktype。它没有提供默认的属性,但提供了release函数及访问属性的方法。
- struct kobject *kobject_create(void)
- {
- struct kobject *kobj;
-
- kobj = kzalloc(sizeof(*kobj), GFP_KERNEL);
- if (!kobj)
- return NULL;
-
- kobject_init(kobj, &dynamic_kobj_ktype);
- return kobj;
- }
-
- struct kobject *kobject_create_and_add(const char *name, struct kobject *parent)
- {
- struct kobject *kobj;
- int retval;
-
- kobj = kobject_create();
- if (!kobj)
- return NULL;
-
- retval = kobject_add(kobj, parent, "%s", name);
- if (retval) {
- printk(KERN_WARNING "%s: kobject_add error: %d\n",
- __func__, retval);
- kobject_put(kobj);
- kobj = NULL;
- }
- return kobj;
- }
在kobject_create()及kobject_create_add()中,使用了这种dynamic_kobj_ktype。这是一种很好的偷懒方法。因为release()函数会释放kobj,所以这里的kobj必须是kobject_create()动态创建的。这里的kobject_create()和kobject_init()相对,kobject_create_and_add()和kobject_init_and_add()相对。值得一提的是,这里用kobject_create()和kobject_create_and_add()创建的kobject无法嵌入其它结构,是独立的存在,所以用到的地方很少。
- void kset_init(struct kset *k)
- {
- kobject_init_internal(&k->kobj);
- INIT_LIST_HEAD(&k->list);
- spin_lock_init(&k->list_lock);
- }
kset_init()对kset进行初始化。不过它的界限同kobject差不多。
- int kset_register(struct kset *k)
- {
- int err;
-
- if (!k)
- return -EINVAL;
-
- kset_init(k);
- err = kobject_add_internal(&k->kobj);
- if (err)
- return err;
- kobject_uevent(&k->kobj, KOBJ_ADD);
- return 0;
- }
kset_register()最大的特点是简单,它只负责把kset中的kobject连入系统,并发布KOBJ_ADD消息。所以在调用它之前,你要先设置好k->kobj.name、k->kobj.parent、k->kobj.kset。
- void kset_unregister(struct kset *k)
- {
- if (!k)
- return;
- kobject_put(&k->kobj);
- }
kset_unregister()只是简单地释放创建时获得的引用计数。使用引用计数就是这么简单。
- struct kobject *kset_find_obj(struct kset *kset, const char *name)
- {
- struct kobject *k;
- struct kobject *ret = NULL;
-
- spin_lock(&kset->list_lock);
- list_for_each_entry(k, &kset->list, entry) {
- if (kobject_name(k) && !strcmp(kobject_name(k), name)) {
- ret = kobject_get(k);
- break;
- }
- }
- spin_unlock(&kset->list_lock);
- return ret;
- }
kset_find_obj()从kset的链表中找到名为name的kobject。这纯粹是一个对外的API。
- static void kset_release(struct kobject *kobj)
- {
- struct kset *kset = container_of(kobj, struct kset, kobj);
- pr_debug("kobject: '%s' (%p): %s\n",
- kobject_name(kobj), kobj, __func__);
- kfree(kset);
- }
-
- static struct kobj_type kset_ktype = {
- .sysfs_ops = &kobj_sysfs_ops,
- .release = kset_release,
- };
与kobject相对的,kset也提供了一种kobj_type,叫做kset_ktype。
- static struct kset *kset_create(const char *name,
- struct kset_uevent_ops *uevent_ops,
- struct kobject *parent_kobj)
- {
- struct kset *kset;
- int retval;
-
- kset = kzalloc(sizeof(*kset), GFP_KERNEL);
- if (!kset)
- return NULL;
- retval = kobject_set_name(&kset->kobj, name);
- if (retval) {
- kfree(kset);
- return NULL;
- }
- kset->uevent_ops = uevent_ops;
- kset->kobj.parent = parent_kobj;
-
-
-
-
-
-
- kset->kobj.ktype = &kset_ktype;
- kset->kobj.kset = NULL;
-
- return kset;
- }
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- struct kset *kset_create_and_add(const char *name,
- struct kset_uevent_ops *uevent_ops,
- struct kobject *parent_kobj)
- {
- struct kset *kset;
- int error;
-
- kset = kset_create(name, uevent_ops, parent_kobj);
- if (!kset)
- return NULL;
- error = kset_register(kset);
- if (error) {
- kfree(kset);
- return NULL;
- }
- return kset;
- }
kset_create()和kset_create_and_add()就是使用kset_type的快速创建函数。
说实话,使用kobject_create_and_add()的比较少见,但使用 kset_create_and_add()的情形还是见过一些的。比如sysfs中那些顶层的目录,就是单纯的目录,不需要嵌入什么很复杂的结构,用简单的kset_create_and_add()创建就好了。
- static inline const char *kobject_name(const struct kobject *kobj)
- {
- return kobj->name;
- }
-
- static inline struct kset *to_kset(struct kobject *kobj)
- {
- return kobj ? container_of(kobj, struct kset, kobj) : NULL;
- }
-
- static inline struct kset *kset_get(struct kset *k)
- {
- return k ? to_kset(kobject_get(&k->kobj)) : NULL;
- }
-
- static inline void kset_put(struct kset *k)
- {
- kobject_put(&k->kobj);
- }
-
- static inline struct kobj_type *get_ktype(struct kobject *kobj)
- {
- return kobj->ktype;
- }
这些是在kobject.h中的内联函数。这里内联函数更多的意思是方便,易于屏蔽内部实现。
以上就是kobject共800余行的代码实现,当然我们忽略了uevent的那部分。
事实证明,自底向上或者顺序的代码分析方法,还是很适合千行左右的代码分析。而且这样分析很全面,容易我们洞察整个模块的意图,从而在理解代码时从较高的抽象角度去看。