hdu--1518--DFS(C&&java深搜之简单)

Square

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5902    Accepted Submission(s): 1882


Problem Description
Given a set of sticks of various lengths, is it possible to join them end-to-end to form a square?
 

Input
The first line of input contains N, the number of test cases. Each test case begins with an integer 4 <= M <= 20, the number of sticks. M integers follow; each gives the length of a stick - an integer between 1 and 10,000.
 

Output
For each case, output a line containing "yes" if is is possible to form a square; otherwise output "no".
 

Sample Input
   
   
   
   
3 4 1 1 1 1 5 10 20 30 40 50 8 1 7 2 6 4 4 3 5
 

Sample Output
   
   
   
   
yes no yes
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

#define max(a,b) ((a)>(b)?(a):(b))
int a[25];
int edge_len,m,tag[26];

int search(int start,int s,int cnt){
	if(s==edge_len){
		return cnt==3?1:search(0,0,cnt+1);
		//return cnt==3?1:search(cnt+1,0,cnt+1); 
		//当找到符合的一条边时,其中必然包含a[0],因为edge_len=a[0]+a[1]+...a[m-1]。
		//所以当搜索第二条边时,可以从cnt+1开始,也就是从a[1]开始
		  
	}else{
		int i;
		for(i=start; i<m; i++){
			if(!tag[i]&&s+a[i]<=edge_len){
				tag[i]=1;
				if(search(i+1,s+a[i],cnt))
					return 1;
				tag[i]=0;
			}
		}
	}
	return 0;
}
int main(){
	int n,i,sum;
	int maxn;									
	scanf("%d",&n);
	while(n--){
		memset(tag,0,sizeof(tag));
		scanf("%d",&m);
		edge_len=sum=maxn=0;
		for(i=0; i<m; i++){
			scanf("%d",&a[i]);
			sum += a[i];
			maxn=max(maxn,a[i]);	
		}
		if(sum%4 || maxn>sum>>2){
			printf("no\n");
		}else{
			edge_len=sum>>2;
			if(search(0,0,1)){
				printf("yes\n");
			}
			else{
				printf("no\n");
			}
		}	
	}
	return 0;
} 
 
 
 
java版:
 
import java.util.Arrays;
import java.util.Comparator;
import java.util.Scanner;

public class hdu1518DFS{
    private static boolean [] vis;
    private static Integer [] array;
    private static int edge;
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int cases,n,sum;
        cases = in.nextInt();
        while(cases-->0){
            n = in.nextInt();
            sum = 0;
            vis = new boolean[n];
            array = new Integer[n];
            for(int i = 0; i < array.length; ++i){
                array[i] = in.nextInt();
                sum += array[i];
            }
            edge = sum >>2;
            if(sum%4 == 0 && edge >= array[0]){
                Arrays.sort(array,new Comparator<Integer>(){    //从大到小排序
                    @Override
                    public int compare(Integer o1, Integer o2){
                        return o2-o1;
                    }
                });
                if(dfs(0,0,0)){
                    System.out.println("yes");
                }else{
                    System.out.println("no");
                }
            }else{
                System.out.println("no");
            }
        }
    }
    private static boolean dfs(int curLen, int num, int cur){
        if(num == 3){
            return true;
        }
        if(curLen == edge){
            if(dfs(0,num+1,num+1)){
                return true;
            }else{
                return false;
            }
        }else{ 
            for(int i = cur; i < array.length; ++i){
                if(!vis[i] && curLen+array[i] <= edge){
                     vis[i] = true;
                     if(dfs(curLen+array[i],num,i+1)){
                         return true;
                     }
                     vis[i] = false;
                }
            }
        }
        return false;
    }
}




 
 
 

你可能感兴趣的:(hdu--1518--DFS(C&&java深搜之简单))