Spark源码分析之-scheduler模块

Background

Spark在资源管理和调度方式上采用了类似于Hadoop YARN的方式,最上层是资源调度器,它负责分配资源和调度注册到Spark中的所有应用,Spark选用Mesos或是YARN等作为其资源调度框架。在每一个应用内部,Spark又实现了任务调度器,负责任务的调度和协调,类似于MapReduce。本质上,外层的资源调度和内层的任务调度相互独立,各司其职。本文对于Spark的源码分析主要集中在内层的任务调度器上,分析Spark任务调度器的实现。

Scheduler模块整体架构

scheduler模块主要分为两大部分:

  1. TaskSchedulerListenerTaskSchedulerListener部分的主要功能是监听用户提交的job,将job分解为不同的类型的stage以及相应的task,并向TaskScheduler提交task。
  2. TaskSchedulerTaskScheduler接收用户提交的task并执行。而TaskScheduler根据部署的不同又分为三个子模块:
    • ClusterScheduler
    • LocalScheduler
    • MesosScheduler

TaskSchedulerListener

Spark抽象了TaskSchedulerListener并在其上实现了DAGSchedulerDAGScheduler的主要功能是接收用户提交的job,将job根据类型划分为不同的stage,并在每一个stage内产生一系列的task,向TaskScheduler提交task。下面我们首先来看一下TaskSchedulerListener部分的类图:

Spark源码分析之-scheduler模块_第1张图片

  • 用户所提交的job在得到DAGScheduler的调度后,会被包装成ActiveJob,同时会启动JobWaiter阻塞监听job的完成状况。
  • 于此同时依据job中RDD的dependency和dependency属性(NarrowDependencyShufflerDependecy),DAGScheduler会根据依赖关系的先后产生出不同的stage DAG(result stage, shuffle map stage)。
  • 在每一个stage内部,根据stage产生出相应的task,包括ResultTask或是ShuffleMapTask,这些task会根据RDD中partition的数量和分布,产生出一组相应的task,并将其包装为TaskSet提交到TaskScheduler上去。

RDD的依赖关系和Stage的分类

在Spark中,每一个RDD是对于数据集在某一状态下的表现形式,而这个状态有可能是从前一状态转换而来的,因此换句话说这一个RDD有可能与之前的RDD(s)有依赖关系。根据依赖关系的不同,可以将RDD分成两种不同的类型:Narrow DependencyWide Dependency

  • Narrow Dependency指的是 child RDD只依赖于parent RDD(s)固定数量的partition。
  • Wide Dependency指的是child RDD的每一个partition都依赖于parent RDD(s)所有partition。

它们之间的区别可参看下图:

根据RDD依赖关系的不同,Spark也将每一个job分为不同的stage,而stage之间的依赖关系则形成了DAG。对于Narrow Dependency,Spark会尽量多地将RDD转换放在同一个stage中;而对于Wide Dependency,由于Wide Dependency通常意味着shuffle操作,因此Spark会将此stage定义为ShuffleMapStage,以便于向MapOutputTracker注册shuffle操作。对于stage的划分可参看下图,Spark通常将shuffle操作定义为stage的边界。

DAGScheduler

在用户创建SparkContext对象时,Spark会在内部创建DAGScheduler对象,并根据用户的部署情况,绑定不同的TaskSechduler,并启动DAGcheduler

private var taskScheduler: TaskScheduler = { //... } taskScheduler.start() private var dagScheduler = new DAGScheduler(taskScheduler) dagScheduler.start()

DAGScheduler的启动会在内部创建daemon线程,daemon线程调用run()从block queue中取出event进行处理。

private def run() { SparkEnv.set(env) while (true) { val event = eventQueue.poll(POLL_TIMEOUT, TimeUnit.MILLISECONDS) if (event != null) { logDebug("Got event of type " + event.getClass.getName) } if (event != null) { if (processEvent(event)) { return } } val time = System.currentTimeMillis() // TODO: use a pluggable clock for testability if (failed.size > 0 && time > lastFetchFailureTime + RESUBMIT_TIMEOUT) { resubmitFailedStages() } else { submitWaitingStages() } } }

run()会调用processEvent来处理不同的event。

DAGScheduler处理的event包括:

  • JobSubmitted
  • CompletionEvent
  • ExecutorLost
  • TaskFailed
  • StopDAGScheduler

根据event的不同调用不同的方法去处理。

本质上DAGScheduler是一个生产者-消费者模型,用户和TaskSchduler产生event将其放入block queue,daemon线程消费event并处理相应事件。

Job的生与死

既然用户提交的job最终会交由DAGScheduler去处理,那么我们就来研究一下DAGScheduler处理job的整个流程。在这里我们分析两种不同类型的job的处理流程。

  1. 没有shuffle和reduce的job

    val textFile = sc.textFile("README.md") textFile.filter(line => line.contains("Spark")).count()
  2. 有shuffle和reduce的job

    val textFile = sc.textFile("README.md") textFile.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey((a, b) => a + b)

首先在对RDDcount()reduceByKey()操作都会调用SparkContextrunJob()来提交job,而SparkContextrunJob()最终会调用DAGSchedulerrunJob()

def runJob[T, U: ClassManifest]( finalRdd: RDD[T], func: (TaskContext, Iterator[T]) => U, partitions: Seq[Int], callSite: String, allowLocal: Boolean, resultHandler: (Int, U) => Unit) { if (partitions.size == 0) { return } val (toSubmit, waiter) = prepareJob( finalRdd, func, partitions, callSite, allowLocal, resultHandler) eventQueue.put(toSubmit) waiter.awaitResult() match { case JobSucceeded => {} case JobFailed(exception: Exception) => logInfo("Failed to run " + callSite) throw exception } }

runJob()会调用prepareJob()对job进行预处理,封装成JobSubmitted事件,放入queue中,并阻塞等待job完成。

当daemon线程的processEvent()从queue中取出JobSubmitted事件后,会根据job划分出不同的stage,并且提交stage:

case JobSubmitted(finalRDD, func, partitions, allowLocal, callSite, listener) => val runId = nextRunId.getAndIncrement() val finalStage = newStage(finalRDD, None, runId) val job = new ActiveJob(runId, finalStage, func, partitions, callSite, listener) clearCacheLocs() if (allowLocal && finalStage.parents.size == 0 && partitions.length == 1) { runLocally(job) } else { activeJobs += job resultStageToJob(finalStage) = job submitStage(finalStage) }

首先,对于任何的job都会产生出一个finalStage来产生和提交task。其次对于某些简单的job,它没有依赖关系,并且只有一个partition,这样的job会使用local thread处理而并非提交到TaskScheduler上处理。

接下来产生finalStage后,需要调用submitStage(),它根据stage之间的依赖关系得出stage DAG,并以依赖关系进行处理:

private def submitStage(stage: Stage) { if (!waiting(stage) && !running(stage) && !failed(stage)) { val missing = getMissingParentStages(stage).sortBy(_.id) if (missing == Nil) { submitMissingTasks(stage) running += stage } else { for (parent <- missing) { submitStage(parent) } waiting += stage } } }

对于新提交的job,finalStage的parent stage还未获得,因此submitStage会调用getMissingParentStages()来获得依赖关系:

private def getMissingParentStages(stage: Stage): List[Stage] = { val missing = new HashSet[Stage] val visited = new HashSet[RDD[_]] def visit(rdd: RDD[_]) { if (!visited(rdd)) { visited += rdd if (getCacheLocs(rdd).contains(Nil)) { for (dep <- rdd.dependencies) { dep match { case shufDep: ShuffleDependency[_,_] => val mapStage = getShuffleMapStage(shufDep, stage.priority) if (!mapStage.isAvailable) { missing += mapStage } case narrowDep: NarrowDependency[_] => visit(narrowDep.rdd) } } } } } visit(stage.rdd) missing.toList }

这里parent stage是通过RDD的依赖关系递归遍历获得。对于Wide Dependecy也就是Shuffle Dependecy,Spark会产生新的mapStage作为finalStage的parent,而对于Narrow Dependecy Spark则不会产生新的stage。这里对stage的划分是按照上面提到的作为划分依据的,因此对于本段开头提到的两种job,第一种job只会产生一个finalStage,而第二种job会产生finalStagemapStage

当stage DAG产生以后,针对每个stage需要产生task去执行,故在这会调用submitMissingTasks()

private def submitMissingTasks(stage: Stage) { val myPending = pendingTasks.getOrElseUpdate(stage, new HashSet) myPending.clear() var tasks = ArrayBuffer[Task[_]]() if (stage.isShuffleMap) { for (p <- 0 until stage.numPartitions if stage.outputLocs(p) == Nil) { val locs = getPreferredLocs(stage.rdd, p) tasks += new ShuffleMapTask(stage.id, stage.rdd, stage.shuffleDep.get, p, locs) } } else { val job = resultStageToJob(stage) for (id <- 0 until job.numPartitions if (!job.finished(id))) { val partition = job.partitions(id) val locs = getPreferredLocs(stage.rdd, partition) tasks += new ResultTask(stage.id, stage.rdd, job.func, partition, locs, id) } } if (tasks.size > 0) { myPending ++= tasks taskSched.submitTasks( new TaskSet(tasks.toArray, stage.id, stage.newAttemptId(), stage.priority)) if (!stage.submissionTime.isDefined) { stage.submissionTime = Some(System.currentTimeMillis()) } } else { running -= stage } }

首先根据stage所依赖的RDD的partition的分布,会产生出与partition数量相等的task,这些task根据partition的locality进行分布;其次对于finalStage或是mapStage会产生不同的task;最后所有的task会封装到TaskSet内提交到TaskScheduler去执行。

至此job在DAGScheduler内的启动过程全部完成,交由TaskScheduler执行task,当task执行完后会将结果返回给DAGSchedulerDAGScheduler调用handleTaskComplete()处理task返回:

private def handleTaskCompletion(event: CompletionEvent) { val task = event.task val stage = idToStage(task.stageId) def markStageAsFinished(stage: Stage) = { val serviceTime = stage.submissionTime match { case Some(t) => "%.03f".format((System.currentTimeMillis() - t) / 1000.0) case _ => "Unkown" } logInfo("%s (%s) finished in %s s".format(stage, stage.origin, serviceTime)) running -= stage } event.reason match { case Success => ... task match { case rt: ResultTask[_, _] => ... case smt: ShuffleMapTask => ... } case Resubmitted => ... case FetchFailed(bmAddress, shuffleId, mapId, reduceId) => ... case other => abortStage(idToStage(task.stageId), task + " failed: " + other) } }

每个执行完成的task都会将结果返回给DAGSchedulerDAGScheduler根据返回结果来进行进一步的动作。

RDD的计算

RDD的计算是在task中完成的。我们之前提到task分为ResultTaskShuffleMapTask,我们分别来看一下这两种task具体的执行过程。

  • ResultTask

     override def run(attemptId: Long): U = { val context = new TaskContext(stageId, partition, attemptId) try { func(context, rdd.iterator(split, context)) } finally { context.executeOnCompleteCallbacks() } }
  • ShuffleMapTask

     override def run(attemptId: Long): MapStatus = { val numOutputSplits = dep.partitioner.numPartitions val taskContext = new TaskContext(stageId, partition, attemptId) try { val buckets = Array.fill(numOutputSplits)(new ArrayBuffer[(Any, Any)]) for (elem <- rdd.iterator(split, taskContext)) { val pair = elem.asInstanceOf[(Any, Any)] val bucketId = dep.partitioner.getPartition(pair._1) buckets(bucketId) += pair } val compressedSizes = new Array[Byte](numOutputSplits) val blockManager = SparkEnv.get.blockManager for (i <- 0 until numOutputSplits) { val blockId = "shuffle_" + dep.shuffleId + "_" + partition + "_" + i val iter: Iterator[(Any, Any)] = buckets(i).iterator val size = blockManager.put(blockId, iter, StorageLevel.DISK_ONLY, false) compressedSizes(i) = MapOutputTracker.compressSize(size) } return new MapStatus(blockManager.blockManagerId, compressedSizes) } finally { taskContext.executeOnCompleteCallbacks() } }

ResultTaskShuffleMapTask都会调用RDDiterator()来计算和转换RDD,不同的是:ResultTask转换完RDD后调用func()计算结果;而ShufflerMapTask则将其放入blockManager中用来shuffle。

RDD的计算调用iterator()iterator()在内部调用compute()RDD依赖关系的根开始计算:

final def iterator(split: Partition, context: TaskContext): Iterator[T] = { if (storageLevel != StorageLevel.NONE) { SparkEnv.get.cacheManager.getOrCompute(this, split, context, storageLevel) } else { computeOrReadCheckpoint(split, context) } } private[spark] def computeOrReadCheckpoint(split: Partition, context: TaskContext): Iterator[T] = { if (isCheckpointed) { firstParent[T].iterator(split, context) } else { compute(split, context) } }

至此大致分析了TaskSchedulerListener,包括DAGScheduler内部的结构,job生命周期内的活动,RDD是何时何地计算的。接下来我们分析一下task在TaskScheduler内干了什么。

TaskScheduler

前面也提到了Spark实现了三种不同的TaskScheduler,包括LocalShedulerClusterSchedulerMesosSchedulerLocalSheduler是一个在本地执行的线程池,DAGScheduler提交的所有task会在线程池中被执行,并将结果返回给DAGSchedulerMesosScheduler依赖于Mesos进行调度,笔者对Mesos了解甚少,因此不做分析。故此章节主要分析ClusterScheduler模块。

ClusterScheduler模块与deploy模块和executor模块耦合较为紧密,因此在分析ClUsterScheduler时也会顺带介绍deploy和executor模块。

首先我们来看一下ClusterScheduler的类图:

ClusterScheduler的启动会伴随SparkDeploySchedulerBackend的启动,而backend会将自己分为两个角色:首先是driver,driver是一个local运行的actor,负责与remote的executor进行通行,提交任务,控制executor;其次是StandaloneExecutorBackend,Spark会在每一个slave node上启动一个StandaloneExecutorBackend进程,负责执行任务,返回执行结果。

ClusterScheduler的启动

SparkContext实例化的过程中,ClusterScheduler被随之实例化,同时赋予其SparkDeploySchedulerBackend

 master match { ... case SPARK_REGEX(sparkUrl) => val scheduler = new ClusterScheduler(this) val backend = new SparkDeploySchedulerBackend(scheduler, this, sparkUrl, appName) scheduler.initialize(backend) scheduler case LOCAL_CLUSTER_REGEX(numSlaves, coresPerSlave, memoryPerSlave) => ... case _ => ... } } taskScheduler.start()

ClusterScheduler的启动会启动SparkDeploySchedulerBackend,同时启动daemon进程来检查speculative task:

override def start() { backend.start() if (System.getProperty("spark.speculation", "false") == "true") { new Thread("ClusterScheduler speculation check") { setDaemon(true) override def run() { while (true) { try { Thread.sleep(SPECULATION_INTERVAL) } catch { case e: InterruptedException => {} } checkSpeculatableTasks() } } }.start() } }

SparkDeploySchedulerBacked的启动首先会调用父类的start(),接着它会启动client,并由client连接到master向每一个node的worker发送请求启动StandaloneExecutorBackend。这里的client、master、worker涉及到了deploy模块,暂时不做具体介绍。而StandaloneExecutorBackend则涉及到了executor模块,它主要的功能是在每一个node创建task可以运行的环境,并让task在其环境中运行。

override def start() { super.start() val driverUrl = "akka://spark@%s:%s/user/%s".format( System.getProperty("spark.driver.host"), System.getProperty("spark.driver.port"), StandaloneSchedulerBackend.ACTOR_NAME) val args = Seq(driverUrl, "", "", "") val command = Command("spark.executor.StandaloneExecutorBackend", args, sc.executorEnvs) val sparkHome = sc.getSparkHome().getOrElse( throw new IllegalArgumentException("must supply spark home for spark standalone")) val appDesc = new ApplicationDescription(appName, maxCores, executorMemory, command, sparkHome) client = new Client(sc.env.actorSystem, master, appDesc, this) client.start() }

StandaloneSchedulerBackend中会创建DriverActor,它就是local的driver,以actor的方式与remote的executor进行通信。

override def start() { val properties = new ArrayBuffer[(String, String)] val iterator = System.getProperties.entrySet.iterator while (iterator.hasNext) { val entry = iterator.next val (key, value) = (entry.getKey.toString, entry.getValue.toString) if (key.startsWith("spark.")) { properties += ((key, value)) } } driverActor = actorSystem.actorOf( Props(new DriverActor(properties)), name = StandaloneSchedulerBackend.ACTOR_NAME) }

在client实例化之前,会将StandaloneExecutorBackend的启动环境作为参数传递给client,而client启动时会将此提交给master,由master分发给所有node上的worker,worker会配置环境并创建进程启动StandaloneExecutorBackend

至此ClusterScheduler的启动,local driver的创建,remote executor环境的启动所有过程都已结束,ClusterScheduler等待DAGScheduler提交任务。

ClusterScheduler提交任务

DAGScheduler会调用ClusterScheduler提交任务,任务会被包装成TaskSetManager并等待调度:

override def submitTasks(taskSet: TaskSet) { val tasks = taskSet.tasks logInfo("Adding task set " + taskSet.id + " with " + tasks.length + " tasks") this.synchronized { val manager = new TaskSetManager(this, taskSet) activeTaskSets(taskSet.id) = manager activeTaskSetsQueue += manager taskSetTaskIds(taskSet.id) = new HashSet[Long]() if (hasReceivedTask == false) { starvationTimer.scheduleAtFixedRate(new TimerTask() { override def run() { if (!hasLaunchedTask) { logWarning("Initial job has not accepted any resources; " + "check your cluster UI to ensure that workers are registered") } else { this.cancel() } } }, STARVATION_TIMEOUT, STARVATION_TIMEOUT) } hasReceivedTask = true; } backend.reviveOffers() }

在任务提交的同时会启动定时器,如果任务还未被执行,定时器持续发出警告直到任务被执行。同时会调用StandaloneSchedulerBackendreviveOffers(),而它则会通过actor向driver发送ReviveOffers,driver收到ReviveOffers后调用makeOffers()

// Make fake resource offers on just one executor def makeOffers(executorId: String) { launchTasks(scheduler.resourceOffers( Seq(new WorkerOffer(executorId, executorHost(executorId), freeCores(executorId))))) } // Launch tasks returned by a set of resource offers def launchTasks(tasks: Seq[Seq[TaskDescription]]) { for (task <- tasks.flatten) { freeCores(task.executorId) -= 1 executorActor(task.executorId) ! LaunchTask(task) } }

makeOffers()会向ClusterScheduler申请资源,并向executor提交LauchTask请求。

接下来LaunchTask会进入executor模块,StandaloneExecutorBackend在收到LaunchTask请求后会调用Executor执行task:

override def receive = { case RegisteredExecutor(sparkProperties) => ... case RegisterExecutorFailed(message) => ... case LaunchTask(taskDesc) => logInfo("Got assigned task " + taskDesc.taskId) executor.launchTask(this, taskDesc.taskId, taskDesc.serializedTask) case Terminated(_) | RemoteClientDisconnected(_, _) | RemoteClientShutdown(_, _) => ... } def launchTask(context: ExecutorBackend, taskId: Long, serializedTask: ByteBuffer) { threadPool.execute(new TaskRunner(context, taskId, serializedTask)) }

Executor内部是一个线程池,每一个提交的task都会包装为TaskRunner交由threadpool执行:

class TaskRunner(context: ExecutorBackend, taskId: Long, serializedTask: ByteBuffer) extends Runnable { override def run() { SparkEnv.set(env) Thread.currentThread.setContextClassLoader(urlClassLoader) val ser = SparkEnv.get.closureSerializer.newInstance() logInfo("Running task ID " + taskId) context.statusUpdate(taskId, TaskState.RUNNING, EMPTY_BYTE_BUFFER) try { SparkEnv.set(env) Accumulators.clear() val (taskFiles, taskJars, taskBytes) = Task.deserializeWithDependencies(serializedTask) updateDependencies(taskFiles, taskJars) val task = ser.deserialize[Task[Any]](taskBytes, Thread.currentThread.getContextClassLoader) logInfo("Its generation is " + task.generation) env.mapOutputTracker.updateGeneration(task.generation) val value = task.run(taskId.toInt) val accumUpdates = Accumulators.values val result = new TaskResult(value, accumUpdates) val serializedResult = ser.serialize(result) logInfo("Serialized size of result for " + taskId + " is " + serializedResult.limit) context.statusUpdate(taskId, TaskState.FINISHED, serializedResult) logInfo("Finished task ID " + taskId) } catch { case ffe: FetchFailedException => { val reason = ffe.toTaskEndReason context.statusUpdate(taskId, TaskState.FAILED, ser.serialize(reason)) } case t: Throwable => { val reason = ExceptionFailure(t) context.statusUpdate(taskId, TaskState.FAILED, ser.serialize(reason)) // TODO: Should we exit the whole executor here? On the one hand, the failed task may // have left some weird state around depending on when the exception was thrown, but on // the other hand, maybe we could detect that when future tasks fail and exit then. logError("Exception in task ID " + taskId, t) //System.exit(1) } } } }

其中task.run()则真正执行了task中的任务,如前RDD的计算章节所述。返回值被包装成TaskResult返回。

至此task在ClusterScheduler内运行的流程有了一个大致的介绍,当然这里略掉了许多异常处理的分支,但这不影响我们对主线的了解。

END

至此对Spark的Scheduler模块的主线做了一个顺藤摸瓜式的介绍,Scheduler模块作为Spark最核心的模块之一,充分体现了Spark与MapReduce的不同之处,体现了Spark DAG思想的精巧和设计的优雅。

当然Spark的代码仍然在积极开发之中,当前的源码分析在过不久后可能会变得没有意义,但重要的是体会Spark区别于MapReduce的设计理念,以及DAG思想的应用。DAG作为对MapReduce框架的改进越来越受到大数据界的重视,hortonworks也提出了类似DAG的框架tez作为对MapReduce的改进。

你可能感兴趣的:(spark调度)