最长公共子序列 (lcs)O(nlogn)算法

本文转自:http://karsbin.blog.51cto.com/1156716/966387

最长公共子序列问题:

给定2个字符串,求其最长公共子串。

如abcde和dbada的最长公共字串为bd。

动态规划:dp[i][j]表示A串前i个和B串前j个的最长公共子串的长度。

若A[i] == B[j] , dp[i][j] = dp[i-1][j-1] + 1;
否则 dp[i][j] = max(dp[i-1][j],dp[i][j-1]);
时间复杂度O(N*M)。
dp[i][j]仅在A[i]==B[j]处才增加 ,对于不相等的地方对最终值是没有影响的。
故枚举相等点处可以对其进行优化。
则对于dp[i][j](这里只计算A[i]==B[j]的i和j),取最大的dp[p][q],满足(p<i,q<j),通过二叉搜索树可以再logn的时间里获取到最大的dp[p][q],区间在[0,j)。
这里也可将其转化为最长递增子序列问题。
举例说明:
A:abdba
B:dbaaba
则1:先顺序扫描A串,取其在B串的所有位置:
    2:a(2,3,5) b(1,4) d(0)。
    3:用每个字母的反序列替换,则最终的最长严格递增子序列的长度即为解。
替换结果:532 41 0 41 532
最大长度为3.
简单说明:上面的序列和最长公共子串是等价的。
对于一个满足最长严格递增子序列的序列,该序列必对应一个匹配的子串。
反序是为了在递增子串中,每个字母对应的序列最多只有一个被选出。
反证法可知不存在更大的公共子串,因为如果存在,则求得的最长递增子序列不是最长的,矛盾。
最长递增子序列可在O(NLogN)的时间内算出。
dp[i] = max(dp[j]+1) ( 满足 a[i] > a[j] && i > j )
显然对于同样的如dp[k] = 3,假定k有多个,记为看k1,k2,.....,km 设k1 < k2 < .... < km
在计算dp[i]的时候,k2,k3,....,km显然对结果没有帮助,取当前最小的k,
满足ans[k] = p (最小的p使得dp[p]=k) ,每次二分,更新ans[dp[i]] = min(ans[dp[i]],i).
 
ps:LCS在最终的时间复杂度上不是严格的O(nlogn),不知均摊上是不是。
举个退化的例子:

A:aaa

B:aaaa
则序列321032103210

长度变成了n*m ,最终时间复杂度O(n*m*(lognm)) > O(n*m)。

这种情况不知有没有很好的解决办法。

附个参考代码:
#include <stdio.h>  
#include <ctype.h>  
#include <string.h>  
#include <iostream>  
#include <string>  
#include <math.h>  
#include <vector>  
#include <queue>  
#include <algorithm>  
 
using namespace std;  
 
const int maxn = 1501 ;  
vector<int> location[26] ;  
int c[maxn*maxn] , d[maxn*maxn] ;  
 
inline int get_max(int a,int b) {   return a > b ? a : b ;  }  
 
//nlogn 求lcs  
int lcs(char a[],char b[])  
{  
    int i , j , k , w , ans , l , r , mid ;  
    for( i = 0 ; i < 26 ; i++) location[i].clear() ;  
    for( i = strlen(b)-1 ; i >= 0 ; i--) location[b[i]-'a'].push_back(i) ;  
    for( i = k = 0 ; a[i] ; i++)  
    {  
        for( j = 0 ; j < location[w=a[i]-'a'].size() ; j++,k++) c[k] = location[w][j] ;  
    }  
    d[1] = c[0] ;   d[0] = -1 ;  
    for( i = ans = 1 ; i < k ; i++)  
    {  
        l = 0 ; r = ans ;  
        while( l <= r )  
        {  
            mid = ( l + r ) >> 1 ;  
            if( d[mid] >= c[i] ) r = mid - 1 ;  
            else l = mid + 1 ;  
        }  
        if( r == ans ) ans++,d[r+1] = c[i] ;  
        else if( d[r+1] > c[i] ) d[r+1] = c[i] ;  
    }  
    return ans ;  
}  
 
int main()  
{  
    char a[maxn] , b[maxn] ;  
    while (~scanf("%s%s",a,b))  
    {  
        printf("%d/n",lcs(a,b));  
    }  
} 
 



你可能感兴趣的:(最长公共子序列 (lcs)O(nlogn)算法)