- 【04】深度学习——训练的常见问题 | 过拟合欠拟合应对策略 | 过拟合欠拟合示例 | 正则化 | Dropout方法 | Dropout的代码实现 | 梯度消失和爆炸 | 模型文件的读写
花落指尖❀
#深度学习深度学习人工智能目标检测神经网络cnn
深度学习1.常见的分类问题1.1模型架构设计1.2万能近似定理1.3宽度or深度1.4过拟合问题1.5欠拟合问题1.6相互关系2.过拟合欠拟合应对策略2.1问题的本源2.2数据集大小的选择2.3数据增广2.4使用验证集2.5模型选择2.6K折交叉验证2.7提前终止3.过拟合欠拟合示例3.1导入库3.2数据生成3.3数据划分3.4模型定义3.5辅助函数3.6可视化4.正则化4.1深度学习中的正则化4
- Datawhale X 李宏毅苹果书 AI夏令营 入门 Task3-机器学习框架
沙雕是沙雕是沙雕
人工智能机器学习
目录实践方法论1.模型偏差2.优化问题3.过拟合4.交叉验证5.不匹配实践方法论1.模型偏差当一个模型由于其结构的限制,无法捕捉数据中的真实关系时,即使找到了最优的参数,模型的损失依然较高。可以通过增加输入特征、使用更复杂的模型结构或采用深度学习等方法来新设计模型,增加模型的灵活性。2.优化问题在机器学习模型训练过程中,即使模型的灵活性足够高,也可能由于优化算法的问题导致训练数据的损失不够低。为了
- 【机器学习】以KNN为例的交叉验证 网格搜索
de-feedback
机器学习算法人工智能
KNNK-NearestNeighbors简称为KNN,根据k个最近的邻居的类别判断当前样本的类别,k一般取奇数。k个邻居中哪种类别的样本多,就判断这个为这个类别距离判断knn首先要判断两个样本之间的距离,距离有多种表示方式欧氏距离生活中常用的距离公式,二维空间中的两点(x1,y1)(x2,y2)(x_1,y_1)(x_2,y_2)(x1,y1)(x2,y2)距离表示为(x1−x2)2+(y1−y
- 代谢组数据分析(十八):随机森林构建代谢组诊断模型
生信学习者2
代谢组分析数据分析随机森林数据挖掘
介绍使用随机森林算法和LASSO特征选择构建了一种胃癌(GC)诊断预测模型。参与者(队列1,n=426)通过随机分层抽样分为发现数据集(n=284)和测试集(n=142)。接下来,在发现数据集上执行LASSO回归,以选择能够识别胃癌患者的较少数量的特征。我们将L1约束的系数设置为0.01,并根据10,000次随机交叉验证的平均误分类误差选择了十个非零系数的特征。在发现数据集上使用引导聚合方法训练了
- 24.8.26学习心得
kkkkk021106
人工智能
验证数据集(ValidationSet)和测试数据集(TestSet)在机器学习和深度学习中都是非常重要的概念。它们各自有不同的用途和目的。下面详细解释两者之间的区别:1.验证数据集(ValidationSet)目的:超参数调整:验证数据集主要用于调整模型的超参数,如学习率、正则化系数、网络层数等。模型选择:用于选择最佳模型。例如,在交叉验证中,通过在验证数据集上的表现来选择性能最好的模型。防止过
- python库——sklearn的关键组件和参数设置
零 度°
pythonpythonsklearn
文章目录模型构建线性回归逻辑回归决策树分类器随机森林支持向量机K-近邻模型评估交叉验证性能指标特征工程主成分分析标准化和归一化scikit-learn,简称sklearn,是Python中一个广泛使用的机器学习库,它建立在NumPy、SciPy和Matplotlib这些科学计算库之上。sklearn提供了简单而有效的工具来进行数据挖掘和数据分析。我们将介绍sklearn中一些关键组件的参数设置。模
- 逻辑回归C参数选择,利用交叉验证实现
吃什么芹菜卷
机器学习逻辑回归算法机器学习笔记
目录前言一、C参数二、交叉验证1.交叉验证是什么2.交叉验证的基本原理3.交叉验证的作用4.常见的交叉验证方法三、k折交叉验证四、C参数和k折交叉验证的关系五、代码实现1.导入库2.k折交叉验证选择C参数3.建立最优模型总结前言逻辑回归(LogisticRegression)是一种用于二分类问题的统计模型和机器学习算法,旨在预测事件的概率。它基于一个线性模型,并通过一个逻辑函数(通常是Sigmoi
- Task4 - 建模与调参
100MHz
1.内容介绍线性回归模型:线性回归对于特征的要求;处理长尾分布;理解线性回归模型;模型性能验证:评价函数与目标函数;交叉验证方法;留一验证方法;针对时间序列问题的验证;绘制学习率曲线;绘制验证曲线;嵌入式特征选择:Lasso回归;Ridge回归;决策树;模型对比:常用线性模型;常用非线性模型;模型调参:贪心调参方法;网格调参方法;贝叶斯调参方法;2.一些基本模型线性回归(LinearRegress
- Dataframe型数据分析技巧汇总
我叫杨傲天
学习笔记机器学习数据分析数据挖掘
Kaggle如何针对少量数据集比赛的打法。数据降维的几种方法HF.075|时间序列趋势性分析方法汇总机器学习必须了解的7种交叉验证方法(附代码)这个图!Python也能一键绘制了,而且样式更多..散点图,把散点图画出花来综述:机器学习中的模型评价、模型选择与算法选择!表格任务中的深度学习模型性能比较再见Onehot!KaggleMaster的上分神操作!特征重要性评估方法之排列重要性
- 代码+视频基于R语言进行K折交叉验证
天桥下的卖艺者
代码+视频系列R语言r语言开发语言
我们在建立数据模型后通常希望在外部数据验证模型的检验能力。然而当没有外部数据可以验证的时候,交叉验证也不失为一种方法。交叉验验证(交叉验证,CV)则是一种评估模型泛化能力的方法,广泛应用中于数证据采挖掘和机器学习领域,在交叉验证通常将数据集分为两部分,一部分为训练集,用于建立预测模型;另一部分为测试集,用于测试该模型的泛化能力。在如何划分2个集合的问题上,统计学界提出了多种方法:简单交叉验证、留一
- R语言群组变量选择、组惩罚group lasso套索模型预测分析新生儿出生体重风险因素数据和交叉验证、可视化
数据挖掘深度学习人工智能算法
原文链接:http://tecdat.cn/?p=25158原文出处:拓端数据部落公众号本文拟合具有分组惩罚的线性回归、GLM和Cox回归模型的正则化路径。这包括组选择方法,如组lasso套索、组MCP和组SCAD,以及双级选择方法,如组指数lasso、组MCP。还提供了进行交叉验证以及拟合后可视化、总结和预测的实用程序。本文提供了一些数据集的例子;涉及识别与低出生体重有关的风险因素。结果是连续测
- 基于神经网络实现手写数字识别(matlab)
入门小新手
神经网络matlab机器学习
实验目的在matlab平台上,采用神经网络实现手写数字识别。在实验过程中:1、初步探讨数据集预处理的作用。2、增加对神经网络的理解,探讨隐含层层数,节点数和训练步长对识别成功率的影响,找到较佳的参数。3、应用交叉验证法评估训练模型的优劣,建立多次实验取均值的严谨思维。二、分类器原理阐述1、前向传播:输入样本从输入层传入,经隐层逐层处理后,传到输出层,计算实际输出和期望输出的误差。2、误差反向传播:
- Python机器学习之交叉验证
一只怂货小脑斧
交叉验证是一种非常常用的对于模型泛化能力进行评估方法,交叉验证既可以解决数据集的数据量不够大问题,也可以解决参数调优的问题。常用的交叉验证方法有:简单交叉验证(HoldOut检验,例如train_test_split)、k折交叉验证(例如KFold)、自助法kfold是将数据集划分为K-折,只是划分数据集;cross_val_score是根据模型进行计算,计算交叉验证的结果,你可以简单认为就是cr
- 【初中生讲机器学习】7. 交叉验证是什么?有哪些?怎么实现?来看!
Geeker · LStar
人工智能机器学习机器学习人工智能交叉验证K折法
创建时间:2024-02-10最后编辑时间:2024-02-10作者:Geeker_LStar你好呀~这里是Geeker_LStar的人工智能学习专栏,很高兴遇见你~我是Geeker_LStar,一名初三学生,热爱计算机和数学,我们一起加油~!⭐(●’◡’●)⭐那就让我们开始吧!文章目录一、训练集、验证集和测试集训练集TrainingSet验证集ValidationSet测试集TestSet三者关
- IA003第一周答疑复盘
旦姐
线上环节1.对于交叉验证的进一步理解(1)信息来源的交叉验证,比如对特斯拉的了解,可以来自wiki或人物传记;(2)信息整理方式的交叉验证,比如按照时间,空间,或者人物;(3)信息加工方法的交叉验证,比如定性或定量,宏观或微观;(4)信息报告(呈现)方式的交叉验证,原始数据或图示法。2.提高对问题的表征能力向上演绎,开上帝视角;向下分解,用变量思维3.核心知识点回顾(1)信息分布数学原理布拉德福定
- 2022-11-14 记FTX暴雷
嘉木007_21679
1、理解抄作业在投资这件事情上,我是个小白,没有建立属于自己的成熟的被市场验证的交易体系。于是我就选择放弃智商,跟随一些kol抄他们的作业。他们做什么,我也做什么,想着通过抄作业来完成市场布置的作业。其中,我还自诩聪明的交叉验证了,回头看他们那些kol其实是同一投资类型的人。从结果方向来说,要么是作业抄对了,验证了抄作业是一个简单可行的方式。要么是作业抄错了,让自己的内心很痛苦,有些适应不了。显然
- 四、机器学习基础概念介绍
ITS_Oaij
脑电机器学习机器学习人工智能
四、机器学习基础概念介绍1_机器学习基础概念机器学习分类1.1有监督学习1.2无监督学习2_有监督机器学习—常见评估方法数据集的划分2.1留出法2.2校验验证法(重点方法)简单交叉验证K折交叉验证(单独流出测试集)(常用方法/Sklearn的默认方法)k折交叉验证(不单独留出测试集)留一法交叉验证Subject-wise交叉验证2.3bootstrap自助法3_有监督机器学习—学习评价指标3.1准
- Task 4:建模调参
我是曾阿牛
Datawhale零基础入门数据挖掘-Task4建模调参四、建模与调参4.1学习目标了解常用的机器学习模型,并掌握机器学习模型的建模与调参流程完成相应学习打卡任务4.2内容介绍线性回归模型:线性回归对于特征的要求;处理长尾分布;理解线性回归模型;模型性能验证:评价函数与目标函数;交叉验证方法;留一验证方法;针对时间序列问题的验证;绘制学习率曲线;绘制验证曲线;嵌入式特征选择:Lasso回归;Rid
- 模型选择的方法
pcqlegend
正则化和交叉验证正则化在经验风险上加一个正则化项或者罚项,回忆下经验风险是模型关于一个训练集的平均损失.交叉验证验证随机的将数据集分为训练集,验证集和测试集,分类简单交叉验证一部分作为训练集,一部分作为测试集,S折交叉验证将数据集随机拆分为数量相同的S个数据集,然后利用S-1个子集的数据做为训练集,剩余的子集作为测试集,然后重复执行这S种选择,最后选出S次测评中平均误差最小的模型。留一交叉验证是S
- Pandas数据预处理之数据标准化-提升机器学习模型性能的关键步骤【第64篇—python:数据预处理】
一见已难忘的申公豹
pandas机器学习python数据预处理性能
文章目录Pandas数据预处理之数据标准化:提升机器学习模型性能的关键步骤1.数据标准化的重要性2.使用Pandas进行数据标准化2.1导入必要的库2.2读取数据2.3数据标准化3.代码解析4.进一步优化4.1最小-最大缩放4.2自定义标准化方法5.处理缺失值和异常值5.1缺失值处理5.2异常值处理6.可视化数据标准化效果7.结合交叉验证进行数据标准化8.自动化数据预处理流程总结Pandas数据预
- trainControl含数——计算交叉验证
chengdehe
trainControl中两个的意义repeats重复次数number几折trainControl(method="repeatedcv",number=10,repeats=3)采用repeatedcv法进行3次十折交叉验证
- Python 机器学习 交叉验证、网格搜索
weixin_42098295
python机器学习开发语言
Python的机器学习项目中,交叉验证(Cross-Validation)和网格搜索(GridSearch)是两种重要的技术,通常用于模型选择和超参数优化。交叉验证和网格搜索也是机器学习中常用的两种技术,可以有效地提高模型的性能。1、交叉验证(Cross-Validation)交叉验证是一种评估模型泛化性能的方法。它涉及将数据集分成几个部分,通常是“折叠”(folds),然后将模型在一个折叠上进行
- 使用sklearn-SGDClassifier分类mnist数据集中‘5‘,并使用交叉验证评估模型
脑子不好真君
机器学习sklearn分类mnist
importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.datasetsimportfetch_openmlfromsklearn.linear_modelimportSGDClassifierfromsklearn.model_selectionimportcross_val_scoremnist=fetch_openml('mnist_78
- 动手学深度学习-02打卡
一技破万法
过拟合、欠拟合及其解决方案1.过拟合、欠拟合的概念2.权重衰减3.丢弃法模型选择、过拟合和欠拟合训练误差和泛化误差训练误差:模型在训练数据集上表现出的误差。泛化误差:模型在任意一个测试数据样本上表现出的误差的期望。模型选择验证数据集除训练集和测试集之外的数据。目的是为了从训练误差估计泛化误差。k折交叉验证把原始训练数据集分割成k个不重合的子数据集,然后做k次模型训练和验证。每一次我们使用一个子数据
- sklearn之模型评估指标总结归纳
lzw2016
机器学习Python学习sklearn模型评估指标归纳总结
文章目录机器学习模型评估分类模型回归模型聚类模型交叉验证中指定scoring参数网格搜索中应用机器学习模型评估以下方法,sklearn中都在sklearn.metrics类下,务必记住哪些指标适合分类,那些适合回归,不能混着用分类的模型大多是Classifier结尾,回归是Regression分类模型accuracy_score(准确率得分)是模型分类正确的数据除以样本总数【模型的score方法算
- 【MATLAB】交叉验证求光滑因子的广义神经网络回归预测算法
Lwcah
MATLAB回归预测算法算法matlab神经网络
有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~1基本定义交叉验证求光滑因子的广义神经网络回归预测算法是一种用于选择模型超参数并提高泛化性能的方法。下面将对该算法进行详细介绍:广义神经网络回归模型:广义神经网络回归模型是一个包含多个层的神经网络模型,每层都由多个神经元组成。每个神经元都有权重和偏差,通过激活函数对输入进行非线性变换并输出结果。模型的目标是通过学习训练数据的特征来拟合输
- 机器学习本科课程 实验5 贝叶斯分类
11egativ1ty
机器学习本科课程机器学习分类python
实验1.使用sklearn的GaussianNB、BernoulliNB、MultinomialNB完成肿瘤预测任务实验内容:使用GaussianNB、BernoulliNB、MultinomialNB完成肿瘤预测计算各自十折交叉验证的精度、查准率、查全率、F1值根据精度、查准率、查全率、F1值的实际意义以及四个值的对比阐述三个算法在肿瘤预测中的表现对比1.读取数据集importpandasasp
- 交叉验证
dreampai
交叉验证不会返回一个模型,在调用cross_val_score时,内部会构建多个模型,但交叉验证的目的只是评估给定算法在特定数据集上训练后的泛化性能好坏。1、scikit-learn中的交叉验证cross_val_score函数的参数:想要评估的模型训练数据真实标签2、分层k折交叉验证和其他策略利用cv参数来调节cross_val_score所使用的折数,可以提供一个交叉验证分离器作为cv参数,来
- 机器学习本科课程 实验3 决策树处理分类任务
11egativ1ty
机器学习本科课程机器学习决策树分类
实验3.1决策树处理分类任务使用sklearn.tree.DecisionTreeClassifier完成肿瘤分类(breast-cancer)计算最大深度为10时,十折交叉验证的精度(accuracy),查准率(precision),查全率(recall),F1值绘制最大深度从1到10的决策树十折交叉验证精度的变化图1.读取数据importnumpyasnpimportpandasaspddat
- 特征缩放和交叉验证法随笔
zidea
特征缩放和交叉验证法因为特征间数据取值范围相差过大,就会造成梯度下降会走的很远。这样优化时间比较长而且可能造成错误路径。数据归一化就是把数据的取值范围处理为0-1或者-11之间任意数据转化为0-1之间(任意数据转化为-1-1之间(均值标准化x为特征数据,u为数据的平均值,s为数据的方差取值范围从-0.5-0.5交叉验证法通常我们会将数据集按一定比例进行切分为训练数据集和测试数据集对于较小数据集时候
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那