【DP】 HDOJ 5378 Leader in Tree Land

状态转移很好想。。。。但是复杂度并不好证明。。。但是确实是n^2的算法。。。

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;

const int maxn = 1005;
const int maxm = 20005;
const int mod = 1000000007;

struct Edge
{
	int v;
	Edge *next;
}E[maxm], *H[maxn], *edges;

LL f[maxn];
LL g[maxn];
LL dp[maxn][maxn];
LL a[maxn];
int size[maxn];
int tot[maxn];
int n, K;

LL powmod(LL a, LL b)
{
	LL base = a, res = 1;
	while(b) {
		if(b % 2) res = res * base % mod;
		base = base * base % mod;
		b /= 2;
	}
	return res;
}

void addedges(int u, int v)
{
	edges->v = v;
	edges->next = H[u];
	H[u] = edges++;
}

void init()
{
	edges = E;
	memset(H, 0, sizeof H);
	memset(dp, 0, sizeof dp);
	memset(tot, 0, sizeof tot);
}

LL C(int n, int m)
{
	if(m > n) return 0;
	return f[n] * g[m] % mod * g[n - m] % mod;
}

void dfs(int u, int fa)
{
	dp[u][0] = 1;
	tot[u] = 1;
	size[u] = 0;
	for(Edge *e = H[u]; e; e = e->next) if(e->v != fa) {
		int v = e->v;
		dfs(v, u);
		for(int i = 0; i <= tot[u] + tot[v]; i++) a[i] = 0;
		LL t = C(size[u]+size[v], size[v]);
		for(int i = tot[u]; i >= 0; i--) {
			for(int j = tot[v]; j >= 1; j--) {
				a[i+j] = (a[i+j] + t * dp[u][i] % mod * dp[v][j] % mod) % mod;
			}
		}
		size[u] += size[v];
		tot[u] += tot[v];
		tot[u] = min(tot[u], K);
		for(int i = 0; i <= tot[u]; i++) dp[u][i] = a[i];
	}

	for(int i = 0; i <= tot[u] + 1; i++) a[i] = 0;
	for(int i = tot[u]; i >= 0; i--) {
		a[i] = (a[i] + size[u] * dp[u][i]) % mod;
		a[i+1] = (a[i+1] + dp[u][i]) % mod;
	}
	tot[u]++;
	size[u]++;
	for(int i = 0; i <= tot[u]; i++) dp[u][i] = a[i];
}

void work()
{
	int u, v;
	scanf("%d%d", &n, &K);
	for(int i = 1; i < n; i++) {
		scanf("%d%d", &u, &v);
		addedges(u, v);
		addedges(v, u);
	}
	
	dfs(1, 1);
	printf("%lld\n", dp[1][K]);
}

int main()
{
	f[0] = 1;
	for(int i = 1; i <= 1000; i++) f[i] = f[i-1] * i % mod;
	g[1000] = powmod(f[1000], mod - 2);
	for(int i = 999; i >= 0; i--) g[i] = g[i+1] * (i + 1) % mod;
	
	int _;
	scanf("%d", &_);
	for(int i = 1; i <= _; i++) {
		printf("Case #%d: ", i);
		init();
		work();
	}
	
	return 0;
}


你可能感兴趣的:(dp)