ubuntu下hadoop-2.2.0搭建



环境:vmware10ubuntu12.04jdk1.7.0_51Hadoop2.2.0

安装vmware10;在虚拟机上安装ubuntu12.04



1.安装Java环境


oracle官网下载jdk,桌面新建tools文件夹并放入里面;这里笔者用的是jdk1.7.0_51


解压:


hp@hp-ubuntu:~/Desktop/tools$ tar -zxvf jdk-7u51-linux-i586.tar.gz


(注:红色为要打的指令。)


jdk1.7.0_51移动到 /usr下:


hp@hp-ubuntu:~/Desktop/tools$mv jdk1.7.0_51 /usr


检查:



export JAVA_HOME=/usr/jdk1.7.0_51

export JRE_HOME=/usr/jdk1.7.0_51/jre

export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib:$JRE_HOME/lib:$CLASSPATH

export PATH=$JAVA_HOME/bin:$PATH:/usr/local/hadoop/bin

export HADOOP_HOME=/usr/local/hadoop

 










修改环境变量:


hp@hp-ubuntu:/etc$vim /etc/profile


把表格里的内容复制到文档最后面:

ubuntu下hadoop-2.2.0搭建_第1张图片


(注:里面的HADOOP等内容是以后Hadoop的环境变量,可以提早在这里一并设置的。)


是环境变量有效:source /etc/profile


检查环境变量是否成功:

ubuntu下hadoop-2.2.0搭建_第2张图片

     


生成SSH证书,配置SSH加密key

 sudo apt-get install openssh-server

ssh-keygen -t rsa -P ""


Generating public/private rsa key pair.
Enter file in which to save the key (/home/hadoop/.ssh/id_rsa):
Your identification has been saved in /home/hadoop/.ssh/id_rsa.
Your public key has been saved in /home/hadoop/.ssh/id_rsa.pub.
The key fingerprint is:
a8:67:6f:bd:04:13:41:5f:a7:13:2d:84:e7:8a:8c:43 
hadoop@ubuntu
The key's randomart image is:
+–[ RSA 2048]—-+
|       .o  o+..  |
|         o..o+.  |
|        . .oo.   |
|      E. .  ..   |
|     ..oS. .     |
|     .o oo.      |
|    . o. ..      |
|     o ….      |
|       .. ..     |
+—————–+


cat $HOME/.ssh/id_rsa.pub >>$HOME/.ssh/authorized_keys


测试配置:

 ssh localhost


The authenticity of host 'localhost (::1)' can't be established.
RSA key fingerprint is d7:87:25:47:ae:02:00:eb:1d:75:4f:bb:44:f9:36:26.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'localhost' (RSA) to the list of known hosts.
Linux ubuntu 2.6.32-22-generic #33-Ubuntu SMP Wed Apr 28 13:27:30 UTC 2010 i686 GNU/Linux
Ubuntu 13.04 LTS
[...snipp...]

ubuntu下hadoop-2.2.0搭建_第3张图片

 


2.安装Hadoop环境:


apache官网下载Hadoop2.2.0放入tools文件夹

(http://mirror.esocc.com/apache/hadoop/common/hadoop-2.2.0/)


解压Hadoop同上jdk,放入/usr/local并且重命名为hadoop

得到:



   
由于前面配置java环境的时候已经把Hadoop环境也配置好了,所以可以直接检查环境是否生效了:

ubuntu下hadoop-2.2.0搭建_第4张图片



至此,环境已经配置好,接下来就要配置Hadoop的文件了。


3.配置Hadoop


hp@hp-ubuntu:/usr/local$cd /usr/local/hadoop/etc/hadoop/


修改core-site.xml


<configuration>

<property>

<name>fs.defaultFS</name>

<value>hdfs://localhost:9000</value>

</property>

<property>

<name>hadoop.tmp.dir</name>

<value>/usr/local/hadoop/tmp</value>

 

</property>

</configuration>


修改hdfs-site.xml:


<configuration>

<property>

<name>dfs.replication</name>

<value>2</value>

</property>

<property>

<name>dfs.namenode.name.dir</name>

<value>/usr/local/hadoop/dfs/name</value>

<final>true</final>

</property>

<property>

<name>dfs.datanode.data.dir</name>

<value>/usr/local/hadoop/dfs/data</value>

<final>true</final>

</property>

<property>

<name>dfs.permissions</name>

<final>false</final>

</property>

</configuration>


创建并且修改mapred-site.xml


<configuration>

<property>

<name>mapred.job.tracker</name>

<value>localhost:9001</value>

</property>

<property>

   <name>mapreduce.cluster.temp.dir</name>

   <value></value>

   <description>No description</description>

   <final>true</final>

 </property>

<property>

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property>

<property>

<name>mapred.system.dir</name>

<value>/usr/local/hadoop/mapred/system</value>

<final>true</final>

</property>

<property>

<name>mapred.local.dir</name>

<value>/usr/local/hadoop/mapred/local</value>

<final>true</final>

 

</property>

<property>

 <name>mapred.child.java.opts</name>

 <value>-Xmx1024m</value>

</property>

</configuration>


修改yarn-site.xml:


<configuration>

 

<!-- Site specific YARN configuration properties -->

<property>

<name>yarn.nodemanager.aux-services</name>

<value>mapreduce_shuffle</value>

</property>

<property> 

  <description>The hostname of the RM.</description> 

  <name>yarn.resourcemanager.hostname</name> 

  <value>localhost</value> 

 </property>

<property> 

       <name>yarn.scheduler.fair.sizebasedweight</name> 

       <value>false</value> 

</property>

 <property>

   <name>yarn.nodemanager.aux-services.mapreduce_shuffle.class</name>

   <value>org.apache.hadoop.mapred.ShuffleHandler</value>

 </property>

 <!--

<property>

   <name>yarn.resourcemanager.address</name>

   <value>127.0.0.1:8032</value>

 </property>

 <property>

   <name>yarn.resourcemanager.scheduler.address</name>

   <value>127.0.0.1:8030</value>

 </property>

 <property>

   <name>yarn.resourcemanager.resource-tracker.address</name>

   <value>127.0.0.1:8031</value>

 </property>-->

</configuration>


修改  hadoop-env.sh

ubuntu下hadoop-2.2.0搭建_第5张图片




在初次安装和使用hadoop之前,需要格式化分布式文件系统HDFS,使用如下命令格式化文件系统


hadoop namenode -format


启动服务:

命令:sbin/start-all.sh



停止服务:sbin/stop-all.sh


查看服务:

ubuntu下hadoop-2.2.0搭建_第6张图片


打开浏览器,输入两个网址查看:


http://localhost:50070/dfshealth.jsp


http://localhost:8088/cluster


ubuntu下hadoop-2.2.0搭建_第7张图片



ubuntu下hadoop-2.2.0搭建_第8张图片




hp@hp-ubuntu:/usr/local/hadoop# mkdir test/


hp@hp-ubuntu:/usr/local/hadoop#gedit test/test



输入并保存测试数据。


把测试数据放入Hadoop中:


hp@hp-ubuntu:/usr/local/hadoop# hadoop fs -mkdir/test-in


hp@hp-ubuntu:/usr/local/hadoop# hadoop dfs-copyFromLocal test/test /test-in

ubuntu下hadoop-2.2.0搭建_第9张图片


存在数据。


运行wordcount


hp@hp-ubuntu:/usr/local/hadoop# hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar wordcount /test-in/test-out


14/05/14 00:08:47 INFO client.RMProxy: Connecting to ResourceManager at localhost/127.0.0.1:8032

14/05/14 00:08:48 INFO input.FileInputFormat: Total input paths to process : 1

14/05/14 00:08:48 INFO mapreduce.JobSubmitter: number of splits:1

14/05/14 00:08:48 INFO Configuration.deprecation: user.name is deprecated. Instead, use mapreduce.job.user.name

14/05/14 00:08:48 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar

14/05/14 00:08:48 INFO Configuration.deprecation: mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class

14/05/14 00:08:48 INFO Configuration.deprecation: mapreduce.combine.class is deprecated. Instead, use mapreduce.job.combine.class

14/05/14 00:08:48 INFO Configuration.deprecation: mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class

14/05/14 00:08:48 INFO Configuration.deprecation: mapred.job.name is deprecated. Instead, use mapreduce.job.name

14/05/14 00:08:48 INFO Configuration.deprecation: mapreduce.reduce.class is deprecated. Instead, use mapreduce.job.reduce.class

14/05/14 00:08:48 INFO Configuration.deprecation: mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir

14/05/14 00:08:48 INFO Configuration.deprecation: mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir

14/05/14 00:08:48 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps

14/05/14 00:08:48 INFO Configuration.deprecation: mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class

14/05/14 00:08:48 INFO Configuration.deprecation: mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir

14/05/14 00:08:49 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1399995699584_0001

14/05/14 00:08:50 INFO impl.YarnClientImpl: Submitted application application_1399995699584_0001 to ResourceManager at localhost/127.0.0.1:8032

14/05/14 00:08:50 INFO mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1399995699584_0001/

14/05/14 00:08:50 INFO mapreduce.Job: Running job: job_1399995699584_0001

14/05/14 00:09:06 INFO mapreduce.Job: Job job_1399995699584_0001 running in uber mode : false

14/05/14 00:09:06 INFO mapreduce.Job: map 0% reduce 0%

14/05/14 00:09:17 INFO mapreduce.Job: map 100% reduce 0%

14/05/14 00:09:28 INFO mapreduce.Job: map 100% reduce 100%

14/05/14 00:09:28 INFO mapreduce.Job: Job job_1399995699584_0001 completed successfully

14/05/14 00:09:28 INFO mapreduce.Job: Counters: 43

        File System Counters

                  FILE: Number of bytes read=33

                  FILE: Number of bytes written=158013

                  FILE: Number of read operations=0

                  FILE: Number of large read operations=0

                  FILE: Number of write operations=0

                  HDFS: Number of bytes read=220

                  HDFS: Number of bytes written=19

                  HDFS: Number of read operations=6

                  HDFS: Number of large read operations=0

                  HDFS: Number of write operations=2

        Job Counters

                  Launched map tasks=1

                  Launched reduce tasks=1

                  Data-local map tasks=1

                  Total time spent by all maps in occupied slots (ms)=9675

                  Total time spent by all reduces in occupied slots (ms)=7727

        Map-Reduce Framework

                  Map input records=9

                  Map output records=16

                  Map output bytes=184

                  Map output materialized bytes=33

                Input split bytes=99

                  Combine input records=16

                  Combine output records=2

                  Reduce input groups=2

                  Reduce shuffle bytes=33

                  Reduce input records=2

                  Reduce output records=2

                  Spilled Records=4

                  Shuffled Maps =1

                  Failed Shuffles=0

                  Merged Map outputs=1

                  GC time elapsed (ms)=113

                  CPU time spent (ms)=4690

                  Physical memory (bytes) snapshot=316952576

                  Virtual memory (bytes) snapshot=2602323968

                  Total committed heap usage (bytes)=293076992

        Shuffle Errors

                  BAD_ID=0

                  CONNECTION=0

                  IO_ERROR=0

                  WRONG_LENGTH=0

                  WRONG_MAP=0

                  WRONG_REDUCE=0

        File Input Format Counters

                  Bytes Read=121

        File Output Format Counters

                  Bytes Written=19



查看输出:


ubuntu下hadoop-2.2.0搭建_第10张图片

 


 












你可能感兴趣的:(ubuntu下hadoop-2.2.0搭建)