http://cpp.zjut.edu.cn/ShowProblem.aspx?ShowID=1423
设dp[i]表示在i点时到达终点要走的期望步数,那么dp[i] = ∑1/m*dp[j] + 1,j是与i相连的点,m是与i相邻的点数,建立方程组求解。重要的一点是先判断DK到达不了的点,需要bfs预处理一下进行离散化,再建立方程组。
#include <stdio.h> #include <iostream> #include <map> #include <set> #include <list> #include <stack> #include <vector> #include <math.h> #include <string.h> #include <queue> #include <string> #include <stdlib.h> #include <algorithm> #define LL __int64 //#define LL long long #define eps 1e-9 #define PI acos(-1.0) using namespace std; const int INF = 0x3f3f3f3f; const int mod = 10000007; int dir[4][2] = {{-1,0},{1,0},{0,-1},{0,1}}; int n,m; int cnt; char g[15][15]; int equ,var; double a[110][110]; double x[110]; int num[15][15]; int sx,sy,ex,ey; struct node { int x,y; }; bool Gauss() { int row,col,max_r; int i,j; row = col = 0; while(row < equ && col < var) { max_r = row; for(i = row+1; i < equ; i++) if(fabs(a[i][col]) > fabs(a[max_r][col])) max_r = i; if(max_r != row) { for(j = col; j <= var; j++) swap(a[row][j],a[max_r][j]); } if(fabs(a[row][col]) < eps) { col++; continue; } for(i = row+1; i < equ; i++) { if(fabs(a[i][col]) < eps) continue; double t = a[i][col] / a[row][col]; a[i][col] = 0; for(j = col+1; j <= var; j++) a[i][j] -= a[row][j]*t; } row++; col++; } for(i = row; i < equ; i++) { if(fabs(a[i][var]) > eps) return false; } for(i = var-1; i >= 0; i--) { if(fabs(a[i][i]) < eps) continue; double t = a[i][var]; for(j = i+1; j < var; j++) t -= a[i][j]*x[j]; x[i] = t/a[i][i]; } return true; } void bfs() { cnt = 0; memset(num,-1,sizeof(num)); queue <struct node> que; que.push((struct node){sx,sy}); num[sx][sy] = cnt++; while(!que.empty()) { struct node u = que.front(); que.pop(); for(int d = 0; d < 4; d++) { int x = u.x + dir[d][0]; int y = u.y + dir[d][1]; if(x >= 1 && x <= n && y >= 1 && y <= m && g[x][y] != 'X' && num[x][y] == -1) { que.push( (struct node){x,y} ); num[x][y] = cnt++; } } } } int main() { while(~scanf("%d %d",&n,&m)) { for(int i = 1; i <= n; i++) { scanf("%s",g[i]+1); for(int j = 1; j <= m; j++) { if(g[i][j] == 'D') { sx = i; sy = j; } if(g[i][j] == 'E') { ex = i; ey = j; } } } bfs(); equ = var = cnt; memset(a,0,sizeof(a)); memset(x,0,sizeof(x)); for(int i = 1; i <= n; i++) { for(int j = 1; j <= m; j++) { if(g[i][j] == 'X') continue; //printf("%d %d %d\n",i,j,M[make_pair(i,j)]); int t = num[i][j]; if(t == -1) continue; if(g[i][j] == 'E') { a[t][t] = 1; a[t][cnt] = 0; } else { a[t][t] = 1; a[t][cnt] = 1; int c = 0; for(int d = 0; d < 4; d++) { int ii = i + dir[d][0]; int jj = j + dir[d][1]; if(ii >= 1 && ii <= n && jj >= 1 && jj <= m && g[ii][jj] != 'X' && num[ii][jj] != -1) c++; } for(int d = 0; d < 4; d++) { int ii = i + dir[d][0]; int jj = j + dir[d][1]; if(ii >= 1 && ii <= n && jj >= 1 && jj <= m && g[ii][jj] != 'X' && num[ii][jj] != -1) { int tt = num[ii][jj]; a[t][tt] = -1.0/c; } } } } } if(!Gauss()) printf("tragedy!\n"); else if(fabs(x[num[sx][sy]]-1000000)<eps) printf("tragedy!\n"); else printf("%.2lf\n",x[num[sx][sy]]); } return 0; }