- MPP(Massively Parallel Processing,大规模并行处理)架构
唯心-fja
架构
MPP(MassivelyParallelProcessing,大规模并行处理)架构是一种数据库系统的设计模式,它允许数据处理任务在多个计算节点上并行执行。这种架构非常适合处理大规模数据集和执行复杂的查询操作。下面是一些关于MPP架构的关键概念和特点:MPP架构的特点并行处理:MPP架构的核心优势在于能够将数据处理任务分解并在多个节点上并行执行。每个节点都有自己的处理器、内存和本地存储,可以独立执
- 网络实验——使用GNS3进行NAT配置
浅浅爱默默
网络
一、NAT1、概念NAT:网络地址转换实现将内网私有IP地址转换为公网IP地址解决公网IP地址数目不足的问题可保护内网IP地址的私密性,起到一定的安全性还可实现企业内多个私有IP网段重叠问题2、NAT分类静态NAT:唯一的私有IP------映射------唯一的公网IP(映射关系确定,永久保存)动态NAT:多个私有IP------映射------多个公网IP(映射关系不确定,向外访问时建立映射关
- 计算机网络实验 三个路由器,计算机网络-实验三-路由器基本配置.doc
kitenancy
计算机网络实验三个路由器
计算机网络-实验三-路由器基本配置北京信息科技大学信息管理学院(课程设计)实验报告实验名称静态路由配置实验地点实验时间课程设计目的:(1)掌握路由器在网络中的作用。(2)掌握路由器的组成,路由器设备的选型。(3)掌握网络模拟仿真软件Boson的使用。(4)通过仿真软件的使用掌握Cisco路由器的基本配置方法,熟练掌握路由器网间网操作系统软件IOS的应用,理解Cisco26XX系列路由器基本配置方法
- 使用 PyTorch 从头开始构建您自己的 Llama 3 架构
子然在打码
pytorchllama人工智能
https://www.aisolink.com/build-your-own-llama-3-architecture-from-scratch-using-pytorch全文摘要本文提供了一个详细的指南,介绍如何使用PyTorch从头开始构建Llama3模型的完整架构,并对自定义数据集进行训练和推理。文章涵盖了构建输入块、解码器块和输出块的步骤,并提供了相应的代码示例。最终目标是构建一个功能齐
- 大模型的RAG微调与Agent:提升智能代理的效率与效果
WeeJot
人工智能人工智能
目录编辑引言RAG模型概述检索阶段生成阶段RAG模型的微调数据集选择损失函数设计微调策略超参数调整RAG模型在智能代理中的应用客户服务信息检索内容创作决策支持:结论引言在人工智能的快速发展中,大型预训练模型(LLMs)已经成为推动技术进步的关键力量。这些模型通过在海量数据上的预训练,掌握了丰富的语言知识和模式识别能力,从而在多种自然语言处理任务上展现出卓越的性能。然而,预训练模型的通用性也意味着它
- STM32的USART串口通讯
我 淦
嵌入式stm32
文章目录一、寄存器与固件库1、基于寄存器方式的开发特点2、基于固态库方式的开发特点二、STM32的USART串口通讯程序STM32的USART简介1、实验要求2、实验环境3、实验准备4、实验代码5、程序烧录6、实验结果三、总结一、寄存器与固件库基于寄存器与基于固件库的stm32LED流水灯例子的编程方式差异比较:1、基于寄存器方式的开发特点(1)具体参数更直观(2)程序运行占用资源少(3)寄存器更
- YOLOv10改进,YOLOv10改进主干网络为GhostNetV3(2024年华为的轻量化架构,全网首发),助力涨点
挂科边缘
YOLOv10改进YOLO计算机视觉目标检测人工智能python深度学习
摘要GhostNetV3是由华为诺亚方舟实验室的团队发布的,于2024年4月发布。摘要:紧凑型神经网络专为边缘设备上的应用设计,具备更快的推理速度,但性能相对适中。然而,紧凑型模型的训练策略目前借鉴自传统模型,这忽略了它们在模型容量上的差异,可能阻碍紧凑型模型的性能提升。在本文中,通过系统地研究不同训练成分的影响,我们介绍了一种用于紧凑型模型的强大训练策略。我们发现,适当的重参数化和知识蒸馏设计对
- OpenBayes 一周速览|微软 Phi-4 发布,降低更多成本实现高效推理;Terra 时空数据集上线
公共资源速递5个数据集:Terra多模态时空数据集ChineseCouplets中文对联数据集AqueousSolubility无机化合物数据集HumanLikeDPODataset大模型对话微调数据集SentimentandEmotionAnalysisDataset情感情绪分析数据集4个教程:一键部署Phi-4Docling:文档解析神器一键部署QVQ-72B-preview铅笔素描风格文生图
- OpenBayes 一周速览丨ShowUI专注GUI自动化,可解析屏幕截图和用户指令;U-MATH数据集上线
公共资源速递5个数据集:U-MATH数学推理数据集AlMedicalChatbot医学对话数据集Tecnalia电子设备废物高光谱数据集WaterlooExploration大规模图像质量评估数据库WasteClassification可回收物及生活垃圾分类数据集3个教程:一键部署QwQ-32B-PreviewHunyuanVideo腾讯混元文生视频DemoShowUl:专注GUI自动化的视觉-语
- 传感器融合(UWB+IMU+超声波),使用卡尔曼滤波器和3种不同的多点定位算法(最小二乘、递归最小二乘和梯度下降)研究(Matlab代码实现)
科研_研学社
算法matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、引言二、传感器介绍(一)UWB(超宽带)(二)IMU(惯性测量单元)(三)超声波传感器三、定位算法(一)卡尔曼滤波器(二)多点定位算法1.最小二乘法2.递归最小二乘法3.梯度下降法四、系统架构五、实验设计六、结果与讨论七、结论2运行结果3参考文献
- 基于Ubuntu(x86)系统和STM32(Keil)编写C程序分别进行编程、验证
迷信的兔子
ubuntustm32单片机linuxkeilmdk
文章目录实验内容一、基本概念(一)、全局变量(二)、局部变量(三)、堆和栈二、编程验证(一)、基于Ubuntu用Linux系统编写C程序(二)、基于STM32用Keil编写C程序三、归纳分析四、总结五、参考文献实验内容实验内容:编写一个C程序,重温全局变量、局部变量、堆、栈等概念,在Ubuntu(x86)系统和STM32(Keil)中分别进行编程、验证(STM32通过串口printf信息到上位机串
- OpenBayes 一周速览|一键部署Qwen2.5-Coder,0编程经验实现代码生成自由!
公共资源速递5个数据集:Coil-100图像数据集Muharaf手写阿拉伯文数据集CollectiveActivity集体活动视频数据集MultimodalSpectroscopic化学多模光谱数据集CDFSOD-benchmark跨域小样本对象检测基准数据集3个教程:一键部署Qwen2.5-CoderInkSight将手写文字数字化DemoGLM-4-Voice端到端中英语音对话模型访问官网立即
- StarRocks Lakehouse 快速入门——Apache Iceberg
导读:StarRocksLakehouse快速入门旨在帮助大家快速了解湖仓相关技术,内容涵盖关键特性介绍、独特的优势、使用场景和如何与StarRocks快速构建一套解决方案。最后大家也可以通过用户真实的使用场景来了解StarRocksLakehouse的最佳实践!ApacheIceberg介绍ApacheIceberg是一种为大规模、复杂数据集设计的开源表格式,这些数据集跨越了PB级别的数据。最初
- 使用scorecardpy库计算woe分箱和iv值
亲持红叶
机器学习风控相关算法人工智能机器学习
woe分箱_iv值计算基于scorecardpy库,乳腺癌数据集importpandasaspdimportnumpyasnpfromsklearn.datasetsimportload_breast_cancerimportscorecardpyasscfromtqdmimportnotebookcancer=load_breast_cancer()df=pd.DataFrame(cancer.
- 在PyTorch框架上训练ImageNet时,Dataloader加载速度慢怎么解决?
cda2024
pytorch人工智能python
在深度学习领域,PyTorch因其灵活性和易用性而受到广泛欢迎。然而,在实际应用中,特别是在处理大规模数据集如ImageNet时,Dataloader的加载速度往往成为瓶颈。本文将深入探讨这一问题,并提供多种解决方案,帮助你在PyTorch框架上高效地训练ImageNet。1.问题背景ImageNet是一个包含超过1400万张图像的大规模数据集,被广泛用于图像分类任务的研究。在PyTorch中,D
- OpenBayes 一周速览|微软 Phi-4 发布,降低更多成本实现高效推理;Terra 时空数据集上线
公共资源速递5个数据集:Terra多模态时空数据集ChineseCouplets中文对联数据集AqueousSolubility无机化合物数据集HumanLikeDPODataset大模型对话微调数据集SentimentandEmotionAnalysisDataset情感情绪分析数据集4个教程:一键部署Phi-4Docling:文档解析神器一键部署QVQ-72B-preview铅笔素描风格文生图
- Kylin入门教程
-龙川-
介绍学习笔记kylin
引言ApacheKylin是一个开源的分布式分析引擎,提供Hadoop上的多维分析(OLAP)能力,使得超大规模数据集的实时查询和分析成为可能。它通过预计算数据立方体来加速查询,使得复杂查询可以在亚秒级响应。本文将详细介绍Kylin的基本概念、安装与配置、基本操作及高级功能,帮助你全面掌握这款强大的数据分析工具。第一部分:Kylin简介1.1什么是Kylin?Kylin是由eBay开发并捐赠给Ap
- 安装python3.12.2环境(实验机器银河麒麟高级服务器)
Red丶哞
桌面运维Pythonlinux运维服务器
1.下载官网Python安装包wgethttps://www.python.org/ftp/python/3.12.2/Python-3.12.2.tar.xz1.1解压tar-xfPython-3.12.2.tar.xz解压完后切换到Python-3.12.2文件夹(这里根据自己解压的文件夹路径)cd/usr/packages/Python-3.12.2/1.2升级软件包管理器CentOS系统:
- yoloV8训练标注数据生成模型
安陆米香
目标检测计算机视觉YOLO目标检测计算机视觉
1、标注工具:vott2、yoloV82.1仓库地址https://github.com/ultralytics/ultralytics2.2参考教程文档文档地址:https://github.com/ultralytics/ultralytics/wiki3、数据集|标注数据格式3.1数据集格式【coco128】3.1.1下载地址:https://cocodataset.org/#downloa
- 使用MoA(Mixture of Agents)混合智能体技术,结合多个开源大语言模型如Llama3、phi-3和Mistral,实现一个强大的AI智能体
fc&&fl
大模型实战应用人工智能语言模型自然语言处理
1.简介论文简介:论文提出了一种称为混合智能体(Mixture-of-Agents,MoA)的方法,利用多个大语言模型(LLM)的集体智慧来提高自然语言理解和生成任务的性能。MoA采用了分层结构,每一层包含多个LLM智能体。每个智能体都将前一层所有智能体的输出作为辅助信息来生成自己的回答。通过迭代地综合和优化回答,MoA可以充分利用不同LLM的独特优势。实验发现,即使其他模型提供的辅助回答质量较低
- 水稻穗检测数据集VOC+YOLO格式6038张1类别
FL1623863129
数据集YOLO深度学习机器学习
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):6038标注数量(xml文件个数):6038标注数量(txt文件个数):6038标注类别数:1标注类别名称:["daosui"]每个类别标注的框数:daosui框数=117696总框数:117696使用标注工具:labe
- 【NOIP普及组】 细胞分裂
我就是南山
C++题目#NOIP普及组算法
题目描述Hanks博士是BT(Bio-Tech,生物技术)领域的知名专家。现在,他正在为一个细胞实验做准备工作:培养细胞样本。Hanks博士手里现在有N种细胞,编号从1-N,一个第i种细胞经过1秒钟可以分裂为Si个同种细胞(Si为正整数)。现在他需要选取某种细胞的一个放进培养皿,让其自由分裂,进行培养。一段时间以后,再把培养皿中的所有细胞平均分入M个试管,形成M份样本,用于实验。Hanks博士的试
- torch.utils.data.Dataset()和torch.utils.data.DataLoader()
我叫罗泽南
深度学习python
torch.utils.data.Dataset()和torch.utils.data.DataLoader()是Pytorch中处理数据集和批量加载数据的重要工具。下面将详细介绍它们的作用、用法,并通过一个简单的例子来演示如何使用它们。torch.utils.data.Dataset()Dataset是Pytorch数据加载的基类,用于表示一个数据集。用户可以继承Dataset类并实现其两个方法
- 基于深度学习的推荐系统构建:Movielens 数据集
fresh的转码之路
深度学习人工智能机器学习推荐算法
基于深度学习的推荐系统构建:Movielens数据集依赖环境代码语言:python3.11.5开发平台:pycharmtensorflow版本:2.18.0MovieLen1M数据及简介MovieLens1M数据集包含包含6000个用户在近4000部电影上的100万条评分,也包括电影元数据信息和用户属性信息。下载地址为:http://files.grouplens.org/datasets/mov
- 大数据是什么?用浅显的语言揭开神秘面纱
Echo_Wish
大数据大数据单例模式
大数据是什么?用浅显的语言揭开神秘面纱在我们生活的时代,“大数据”已经从一个技术术语,成为了街头巷尾时常听到的词汇。然而,究竟什么是大数据?它离我们有多远?我们该如何理解这个复杂又常用的概念?作为一名深耕大数据领域的创作者,我希望用通俗易懂的语言,结合生活实例和代码,为大家揭开大数据的神秘面纱。一、大数据的定义:比“大”更重要的是“复杂性”从广义上讲,大数据指的是无法通过传统手段高效处理的数据集合
- 如何攻击一个服务器(仅用于教育及娱乐实验目的)
vliu612
服务器
importsocketimportosdefcreate_virus():#创建一个简单的病毒脚本,它会不断尝试连接目标服务器并发送恶意数据virus_code="""importsocketimporttimeimportthreadingdefattack_server(ip,port):whileTrue:try:s=socket.socket(socket.AF_INET,socket.
- 基于区块链的云上数据访问控制模型研究
XLYcmy
论文阅读阅读笔记网络安全论文阅读论文笔记区块链访问控制云数据
论⽂选择理由:汉语论⽂,对于新⼿⼊⼿阅读相对容易之前,进⾏过区块链⽅⾯的研究,有⼀定基础⽅便理解论⽂通读情况:①基本掌握论⽂所提出背景和要解决的问题②⼤致理解论⽂所提出的⽅案和优势收获:⼤致梳理出⼀篇做的架构:(我的理解)背景→现有⽅案不⾜→预备免识→提出⽅案→⽅案核⼼设计与算法→与其他⽅案对比→设计实验环境与实验指标进⾏⽅案验证→总结与展望
- python中的读取文件的方法总结——路径
念一不念二
pythonpython开发语言
在windows系统下的路径一般是“/”,在读取路径下的文件的时候,一般采用两种方式:read_csv(r"D:\dataset\data")read_csv("D:\\dataset\\data")在linux系统下的路径一般是“\”。(1)./data#对本目录下的数据集进行导入如果数据集data放在和.py文件下,可以使用.py文件对如下路径进行导入a=pd.read_csv("./cora
- GAN在图像增强中的应用实战指南
码字仙子
本文还有配套的精品资源,点击获取简介:图像增强技术通过算法改善图像质量,GAN作为一种生成对抗网络,在此领域具有重要应用。通过生成器和判别器的对抗性训练,GAN可以生成逼真图像、修复低质量图像、扩增数据集并进行风格迁移。本项目将介绍如何使用Python及其相关库实现GAN图像增强,包括模型的构建、训练和评估。通过项目案例学习,你可以掌握GAN在图像增强中的实际应用,提高图像处理和深度学习的技能。1
- DNA图谱分析:自动分析DNA图谱中的变异YOLOv5、YOLOv8、YOLOv10
2025年数学建模美赛
YOLO深度学习目标跟踪机器人人工智能
目录引言项目背景与目标YOLO模型简介DNA图谱数据集准备YOLOv5、YOLOv8和YOLOv10模型训练与优化DNA图谱变异检测的实现UI界面设计与实现评估与优化未来展望结论完整代码实现1.引言随着基因组学的进步,DNA图谱分析已经成为基因检测、疾病诊断、遗传学研究等领域的重要工具。在DNA图谱中,通常会呈现出染色体的多个片段,其中的一些变异可能对健康产生深远的影响。手工分析DNA图谱变异不仅
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s