http://acm.hdu.edu.cn/showproblem.php?pid=4362
题意:有m个阶段,每个阶段都有n个龙珠,当在某一阶段选择一个龙珠,该阶段其他龙珠都会消失。给出两个m*n的矩阵,第一个矩阵表示消灭第i个阶段第j个龙珠的位置,第二个矩阵表示取第i个阶段第j个龙珠消耗的能量,同时当第x个位置到第个位置需要消耗 | y - x|的能量。问最后每个阶段取走一个龙珠最小的能量消耗。
思路:状态转移方程很容易,dp[i][j] = min(dp[i-1][k] + abs( pos[i-1][k] - pos[i][j] ) ) + energy[i][j]。
但由于n较大,想着会TLE。试着敲出来,果真TLE。改了改细节,然后加了个内联函数水过。
#include <stdio.h> #include <string.h> #include <algorithm> #include <cmath> using namespace std; const int INF = 0x3f3f3f3f; int n,m,x; int pos[55][1010],ener[55][1010],dp[55][1010]; inline int chk(int x) { if(x < 0) return -x; return x; } int main() { int test; scanf("%d",&test); while(test--) { scanf("%d %d %d",&n,&m,&x); for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) scanf("%d",&pos[i][j]); } for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) scanf("%d",&ener[i][j]); } for(int j = 0; j < m; j++) dp[0][j] = chk(pos[0][j]-x) + ener[0][j]; for(int i = 1; i < n; i++) { for(int j = 0; j < m; j++) { int tmp = INF; for(int k = 0; k < m; k++) { int sum = dp[i-1][k] + chk(pos[i-1][k] - pos[i][j]); if(tmp > sum) tmp = sum; } dp[i][j] = tmp+ener[i][j]; } } int ans = INF; for(int j = 0; j < m; j++) ans = min(ans, dp[n-1][j]); printf("%d\n",ans); } return 0; }
再看状态转移方程,dp[i][j] = min(dp[i-1][k] + abs( pos[i-1][k] - pos[i][j] ) ) + energy[i][j],发现dp[i][j]与energy[i][j] 和 pos[i][j]无关,去绝对值的方法是排序,对pos排序后,用单调队列存上一行 dp[i-1][k] +(-) pos[i-1][k]的值,最后取队首(最大)即可。该题的正解应该是单调队列,做了hdu437后,又回来A一下。
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <cmath>
using namespace std;
const int INF = 0x3f3f3f3f;
struct node
{
int pos;
int ener;
bool operator < (const struct node &tmp)const
{
return pos < tmp.pos;
}
}point[55][1010];
int dp[55][1010];
int abss(int x)
{
if(x < 0)
return -x;
return x;
}
int n,m,x;
int main()
{
int test;
scanf("%d",&test);
while(test--)
{
scanf("%d %d %d",&n,&m,&x);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
scanf("%d",&point[i][j].pos);
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= m; j++)
scanf("%d",&point[i][j].ener);
sort(point[i]+1,point[i]+1+m);
}
memset(dp,INF,sizeof(dp));
for(int j = 1; j <= m; j++)
dp[1][j] = abss(point[1][j].pos - x) + point[1][j].ener;
for(int i = 2; i <= n; i++)
{
int minn = INF;
int index = 1;
for(int j = 1; j <= m; j++)
{
while(index <= m && point[i-1][index].pos <= point[i][j].pos)
{
minn = min(minn, dp[i-1][index]-point[i-1][index].pos);
index++;
}
dp[i][j] = minn + point[i][j].pos;
}
minn = INF;
index = m;
for(int j = m; j >= 1; j--)
{
while(index >= 1 && point[i-1][index].pos > point[i][j].pos)
{
minn = min(minn,dp[i-1][index] + point[i-1][index].pos);
index--;
}
dp[i][j] = min(dp[i][j], minn-point[i][j].pos);
dp[i][j] += point[i][j].ener;
}
}
int ans = dp[n][1];
for(int i = 2; i <= m; i++)
ans = min(ans, dp[n][i]);
printf("%d\n",ans);
}
return 0;
}