POJ3696 The Luckiest number 欧拉函数应用

题目链接:http://poj.org/problem?id=3696


题目大意:对于给定的整数L,找出L能整除最短的全8序列的长度,做为Bob的幸运数字。


分析:我们设幸运数字是x,由题意可知,长度为x全8序列为:8/9 * (10^x-1)=L * p,即(10^x-1)=9 * L * p/8。令m=9 * L/gcd(L,8),则存在p',使9 * L * p/8=m * p',方程转换为(10^x-1)=m * p',即求同余方程10^x≡1(mod m)的最小解。

    根据欧拉公式我们知道,10^Φ(m)≡1(mod m),而我们要求的是最小的解,所以答案肯定是Φ(m)的因子,所以只需要枚举Φ(m)的因子,然后检查模值是否为1即可。

    解题步骤如下:

    (1)求解x=Φ(m);

    (2)找出Φ(m)的所有素因子pi;

    (3)令x=x/pi,直到10^x≠1(mod m)或pi不能整除x。如果10^x≠1(mod m),令x=x×pi;

    (4)重复步骤(3),直到所有的素因子都经过(3)处理;

    (5)此时x就是满足10^x≡1(mod m)的最小解。

对于何时无解呢?很显然,当gcd(10,m)!=1时,方程无解。因为10^x-1既不能被2整除,又不能被5整除。


实现代码如下:

#include <cstdio>
#include <iostream>
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b)
{
    return b?gcd(b,a%b):a;
}
ll mod;
ll multi(ll a,ll b)
{
    ll ans=0;
    while(b)
    {
        if(b&1) ans=(ans+a)%mod;
        a=(a+a)%mod;
        b>>=1;
    }
    return ans;
}
ll quick_mod(ll x)
{
    ll ans=1,m=10;
    while(x)
    {
        if(x&1) ans=multi(ans,m);
        m=multi(m,m);
        x>>=1;
    }
    return ans;
}
int main()
{
    int T=1;
    while(scanf("%lld",&mod)&&mod)
    {
        printf("Case %d: ",T++);
        mod=mod*9/gcd(mod,8);
        if(gcd(mod,10)!=1)
        {
            printf("0\n");
            continue;
        }
        ll rea=mod,n=mod;
        ll p[50][2];
        int k=0;
        for(ll i=2;i*i<=n;i++)
          if(n%i==0)
          {
              rea=rea-rea/i;
              do
                n/=i;
              while(n%i==0);
          }
        if(n>1) rea=rea-rea/n;
        n=rea;
        for(ll i=2;i*i<=n;i++)
          if(n%i==0)
          {
              p[k][0]=i;
              p[k][1]=0;
              do
              {
                  n/=i;
                  p[k][1]++;
              }while(n%i==0);
              k++;
          }
          if(n>1)
          {
              p[k][0]=n;
              p[k][1]=1;
              k++;
          }
          for(int i=0;i<k;i++)
            for(int j=1;j<=p[i][1];j++)
              if(quick_mod(rea/p[i][0])==1)
                rea/=p[i][0];
          printf("%lld\n",rea);
    }
    return 0;
}


你可能感兴趣的:(POJ3696 The Luckiest number 欧拉函数应用)