HDU 4812 D Tree (树分治之点分治)

题目大意:

给出一棵树, 顶点数 n <= 100000

每个点有一个权值

给出K

询问这棵树中两点路径上的点的权值乘积对1e6 + 3取模之后等于K的路径的两个端点形成的点对中字典序最小的


大致思路:

点分治第二题

用f[i]表示从当前的子树根开始到某个点的路径乘积为i的点的最小标号

于是对于每一次分治, 去掉重心x之后, 依次处理每一棵子树来使得f的来源不一样

注意要预处理逆元


代码如下:

Result  :  Accepted     Memory  :  24420 KB     Time :  2823 ms

/*
 * Author: Gatevin
 * Created Time:  2015/10/14 9:59:26
 * File Name: Sakura_Chiyo.cpp
 */
#include<iostream>
#include<sstream>
#include<fstream>
#include<vector>
#include<list>
#include<deque>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<cmath>
#include<ctime>
#include<iomanip>
using namespace std;
const double eps(1e-8);
typedef long long lint;

#define maxn 100010

struct Edge
{
    int u, v, nex;
    Edge(){}
    Edge(int _u, int _v, int _nex)
    {
        u = _u, v = _v, nex = _nex;
    }
};

Edge edge[maxn << 1];
int head[maxn];
int E;
int n;

void add_Edge(int u, int v)
{
    edge[++E] = Edge(u, v, head[u]);
    head[u] = E;
}

int del[maxn];
int root;
int mx[maxn];
int size[maxn];
int mi;
int N;
lint K;
lint w[maxn];
const lint mod = 1e6 + 3;
pair<int, int> ans;
lint rev[1000010];

void getRev()
{
    rev[1] = 1;
    for(lint i = 2; i < mod; i++)
        rev[i] = (mod - mod / i) * rev[mod % i] % mod;
}

void dfs_size(int now, int father)
{
    size[now] = 1;
    mx[now] = 1;
    for(int i = head[now]; i + 1; i = edge[i].nex)
    {
        int v = edge[i].v;
        if(v != father && !del[v])
        {
            dfs_size(v, now);
            size[now] += size[v];
            if(size[v] > mx[now]) mx[now] = size[v];
        }
    }
}

void dfs_root(int r, int now, int father)
{
    if(size[r] - size[now] > mx[now]) mx[now] = size[r] - size[now];
    if(mx[now] < mi) mi = mx[now], root = now;
    for(int i = head[now]; i + 1; i = edge[i].nex)
    {
        int v = edge[i].v;
        if(v != father && !del[v]) dfs_root(r, v, now);
    }
}

lint f[1000010];//f[i]表示距离为i的字典序最小的点的标号+pre
const pair<int, int> inf = make_pair(1e9, 1e9);
lint pre;
const lint bit = 1e5;

void get(int now, int father, lint dis, int flag)
{
    dis = dis*w[now] % mod;
    if(flag == 1)
    {
        //dis*x % mod = K -> x = K*dis^(mod - 2) % mod
        if(f[K*rev[dis] % mod] > pre)
        {
            int other = (int)(f[K*rev[dis] % mod] - pre);
            pair<int, int> p = other < now ? make_pair(other, now) : make_pair(now, other);
            if(ans > p) ans = p;
        }
    }
    else
    {
        if(f[dis] <= pre) f[dis] = pre + now;
        else f[dis] = min(f[dis], pre + now);
    }
    for(int i = head[now]; i + 1; i = edge[i].nex)
    {
        int v = edge[i].v;
        if(!del[v] && v != father)
            get(v, now, dis, flag);
    }
}


void dfs(int now)
{
    mi = N;
    dfs_size(now, 0);
    dfs_root(now, now, 0);
    del[root] = 1;
    pre += bit;
    f[w[root]] = pre + root;//pre是因为每次清空f数组是不现实的, 于是用pre/bit表示第几次
    for(int i = head[root]; i + 1; i = edge[i].nex)
    {
        int v = edge[i].v;
        if(!del[v])
        {
            get(v, root, 1, 1);
            get(v, root, w[root], 0);
        }
    }
    for(int i = head[root]; i + 1; i = edge[i].nex)
    {
        int v = edge[i].v;
        if(!del[v]) dfs(v);
    }
}

void solve()
{
    ans = inf;
    //pre = 0
    //memset(f, 0, sizeof(f));利用pre不清0, f就可以不清0了
    dfs(1);
    if(ans == inf) puts("No solution");
    else printf("%d %d\n", ans.first, ans.second);
}

int main()
{
    getRev();//预处理逆元
    pre = 0;
    while(scanf("%d %I64d", &N, &K) != EOF)
    {
        E = 0;
        memset(head, -1, sizeof(head));
        memset(del, 0, sizeof(del));
        
        for(int i = 1; i <= N; i++)
            scanf("%I64d", &w[i]);
        int u, v;
        for(int i = 1; i < N; i++)
        {
            scanf("%d %d", &u, &v);
            add_Edge(u, v);
            add_Edge(v, u);
        }
        solve();
    }
    return 0;
}




你可能感兴趣的:(tree,HDU,D,点分治,4812)