196. Matrix Multiplication
time limit per test: 0.25 sec.
memory limit per test: 65536 KB
input: standard
output: standard
Let us consider an undirected graph G = <V, E> which has N vertices and M edges. Incidence matrix of this graph is an N × M matrix A = {a
ij}, such that a
ij is 1 if i-th vertex is one of the ends of j-th edge and 0 in the other case. Your task is to find the sum of all elements of the matrix A
TA where A
T is A transposed, i.e. an M × N matrix obtained from A by turning its columns to rows and vice versa.
Input
The first line of the input file contains two integer numbers — N and M (2 le N le 10,000, 1 le M le 100,000). 2M integer numbers follow, forming M pairs, each pair describes one edge of the graph. All edges are different and there are no loops (i.e. edge ends are distinct).
Output
Output the only number — the sum requested.
Sample test(s)
Input
4 4 1 2 1 3 2 3 2 4
Output
18
Author: |
Andrew Stankevich, Georgiy Korneev |
Resource: |
Petrozavodsk Winter Trainings 2003 |
Date: |
2003-02-06 |
思路:自己手动执行几下就可以发现规律,这里存储图中边的方法为完全关联矩阵(离散数学中有介绍),而本题的规律为只要统计每个定点的出现次数的平方即可
AC代码:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
using namespace std;
int num[10005];
int N, M;
int main() {
while(scanf("%d %d", &N, &M) != EOF) {
memset(num, 0, sizeof(num));
for(int i = 0; i < M; i++) {
int a, b;
scanf("%d %d", &a, &b);
num[a]++, num[b]++;
}
LL ans = 0;
for(int i = 1; i <= N; i++) {
ans += (num[i] * num[i]);
}
cout << ans << endl;
}
return 0;
}