题目大意:
n个点,m条边,边给出的信息为:两个端点编号,以及权值,权值可为负数。判断图中是否存在负环。
思路:
bellmanford判断负环
spaf bfs判断负环
代码:
SPFA:
#include <iostream>
using namespace std;
#include <stdio.h>
#include <cstring>
#include <queue>
#define N 40000
#define M 100000
#define INF 0x3f3f3f3f
struct node {
int v,w,n;
}edge[M];
int head[N],dis[N],cnt[N],n,m,s,f,num;
int vis[N];
void add(int a,int b,int c) {
edge[num].v = b;
edge[num].w = c;
edge[num].n = head[a];
head[a] = num++;
}
void SPFA() {
for(int i = 0; i < n; i++) {
dis[i] = INF;
vis[i] = 0;
}
dis[s] = 0;
vis[s] = 1;
queue<int> Q;
Q.push(s);
while(!Q.empty()) {
int u = Q.front();
Q.pop();
vis[u] = 0;
for(int i = head[u]; i != -1; i = edge[i].n) {
int v = edge[i].v;
if(dis[v] > dis[u] + edge[i].w) {
dis[v] = dis[u] + edge[i].w;
if(!vis[v]) {
cnt[v] ++;
if(cnt[v] > n) {
f = 1;
return;
}
vis[v] = 1;
Q.push(v);
}
}
}
}
}
int main() {
int T;
int u,v,w;
scanf("%d",&T);
while(T--) {
s = 0;
// t = n - 1;
memset(head,-1,sizeof(head));
memset(cnt,0,sizeof(cnt));
f = 0;
num = 0 ;
// cout << endl;
scanf("%d%d",&n,&m);
for(int i = 0; i < m; i++) {
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
}
//cout << endl;
SPFA();
if(f)
printf("possible\n");
else
printf("not possible\n");
}
return 0;
}
bellmanford算法:
#include <iostream>
using namespace std;
#include <cstring>
#include <stdio.h>
#include <algorithm>
const int maxn = 1005;
const int maxm = 2005;
struct edge {
int u,v;
int d;
}e[maxm];
const int INF = 0x3f3f3f3f;
int N,M;
int d[maxn];
bool BellmanFord() {
//int flag = 0;
for(int i = 0; i < N; i++) {
d[i] = INF;
}
d[0] = 0;
for(int i = 0; i < N - 1; i++)
for(int j = 0; j < M; j++)
if(d[e[j].u] != INF && d[e[j].v] > d[e[j].u] + e[j].d)
d[e[j].v] = d[e[j].u] + e[j].d;
for(int i = 0; i < M; i++)
if(d[e[i].u]!= INF && d[e[i].u] + e[i].d < d[e[i].v])// {
return true;
/* flag = 1; d[e[i].v] = d[e[i].u] + e[i].d; break;*/
//}
/*if(flag) return false; return true;*/
return false;
}
int main() {
int T;
scanf("%d",&T);
while(T--) {
scanf("%d%d",&N,&M);
for(int i = 0; i < M; i++)
scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].d);
if(BellmanFord())
printf("possible\n");
else
printf("not possible\n");
}
return 0;
}