[树链剖分 线段树] BZOJ 2908 又是nand


树剖 然后开32棵线段树 记录1/0 从左/右 经过 变成的值
然后就是一些区间合并成一条有向路径


#include<cstdio>
#include<cstdlib>
#include<algorithm>
#define V G[p].v
#define nand(x,y) (!((x)&(y)))
#define digit(x,k) (((x)>>((k)-1))&1)
using namespace std;
typedef long long ll;

inline char nc()
{
	static char buf[100000],*p1=buf,*p2=buf;
	if (p1==p2) { p2=(p1=buf)+fread(buf,1,100000,stdin); if (p1==p2) return EOF; }
	return *p1++;
}

inline void read(int &x){
	char c=nc(),b=1;
	for (;!(c>='0' && c<='9');c=nc()) if (c=='-') c=-1;
	for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
}

inline void read(char &x){
	for (x=nc();x!='Q' && x!='R';x=nc());
}

const int N=100005;

struct SEGTREE{
	struct node{
		bool f[2][2]; // 0 right 1 left
		node(int d=-1){
			if (d==-1)
			{
				f[0][1]=f[1][1]=1;
				f[0][0]=f[1][0]=0;
			}
			else
			{
				f[0][1]=f[1][1]=nand(1,d);
				f[0][0]=f[1][0]=nand(0,d);
			}
		}
		friend node operator + (const node A,const node B){
			node ret;
			ret.f[0][1]=B.f[0][A.f[0][1]];
			ret.f[0][0]=B.f[0][A.f[0][0]];
			ret.f[1][1]=A.f[1][B.f[1][1]];
			ret.f[1][0]=A.f[1][B.f[1][0]];
			return ret;
		}
	}T[N*4];
	int M;
	void Build(int n,int *a,int k){
		for (M=1;M<n+2;M<<=1);
		for (int i=1;i<=n;i++)
			T[M+i]=node(digit(a[i],k));
		for (int i=M-1;i;i--)
			T[i]=T[i<<1]+T[i<<1|1];
	}
	node Query(int s,int t){
		node lret,rret,ret;
		for (s+=M-1,t+=M+1;s^t^1;s>>=1,t>>=1)
		{
			if (~s&1) lret=lret+T[s^1];
			if ( t&1) rret=T[t^1]+rret;
		}	
		return lret+rret;
	}
	void Change(int s,int r){
		T[s+=M]=node(r);
		while (s>>=1)
			T[s]=T[s<<1]+T[s<<1|1];
	}
}Seg[35];

struct edge{
	int u,v,next;
};

edge G[2*N];
int head[N],inum;

inline void add(int u,int v,int p){
	G[p].u=u; G[p].v=v; G[p].next=head[u]; head[u]=p;
}

int size[N],depth[N],fat[N];
int clk,tid[N],top[N];

void dfs(int u,int fa){
	fat[u]=fa; depth[u]=depth[fa]+1; size[u]=1;
	for (int p=head[u];p;p=G[p].next)
		if (V!=fa)
			dfs(V,u),size[u]+=size[V];
}

void find(int u,int fa,int z){
	tid[u]=++clk; top[u]=z;
	int maximum=0,son=0;
	for (int p=head[u];p;p=G[p].next)
		if (V!=fa && size[V]>maximum)
			maximum=size[son=V];
	if (son) find(son,u,z);
	for (int p=head[u];p;p=G[p].next)
		if (V!=fa && V!=son)
			find(V,u,V);
}

inline int LCA(int u,int v){
	for (;top[u]!=top[v];u=fat[top[u]])
		if (depth[top[u]]<depth[top[v]]) 
			swap(u,v);
	if (depth[u]>depth[v]) swap(u,v);
	return u;
}

int n,m,K;
int val[N];

int Up(int org,int u,int lca,int k){
	SEGTREE::node ret;
	for (;top[u]!=top[lca];u=fat[top[u]])
		ret=Seg[k].Query(tid[top[u]],tid[u])+ret;
	ret=Seg[k].Query(tid[lca],tid[u])+ret;
	return ret.f[1][org];
}

int Down(int org,int u,int lca,int k){
	SEGTREE::node ret;
	for (;top[u]!=top[lca];u=fat[top[u]])
		ret=Seg[k].Query(tid[top[u]],tid[u])+ret;
	if (u!=lca) ret=Seg[k].Query(tid[lca]+1,tid[u])+ret;
	return ret.f[0][org];
}

inline ll Solve(int u,int v){
	int lca=LCA(u,v),xx;
	ll ans=0;
	for (int k=1;k<=K;k++)
	{
		xx=0;
		xx=Up(xx,u,lca,k);
		xx=Down(xx,v,lca,k);
		ans+=xx*(1LL<<(k-1));
	}
	return ans;
}

inline void Replace(int u,int r){
	for (int k=1;k<=K;k++)
		Seg[k].Change(tid[u],digit(r,k));
}

int itmp[N];

int main()
{
	int iu,iv,Q; char order;
	freopen("t.in","r",stdin);
	freopen("t.out","w",stdout);
	read(n); read(Q); read(K);	
	for (int i=1;i<=n;i++) read(val[i]);
	for (int i=1;i<n;i++)
		read(iu),read(iv),add(iu,iv,++inum),add(iv,iu,++inum);
	dfs(1,0);
	find(1,0,1);
	for (int i=1;i<=n;i++)
		itmp[tid[i]]=val[i];
	for (int k=1;k<=K;k++)
		Seg[k].Build(n,itmp,k);
	while (Q--)
	{
		read(order); read(iu); read(iv);
		if (order=='Q')
			printf("%lld\n",Solve(iu,iv));
		else
			Replace(iu,iv);
	}
	return 0;
}


你可能感兴趣的:([树链剖分 线段树] BZOJ 2908 又是nand)