[POJ 3735] Training little cats (构造矩阵、矩阵快速幂)

Training little cats
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 9613   Accepted: 2296

Description

Facer's pet cat just gave birth to a brood of little cats. Having considered the health of those lovely cats, Facer decides to make the cats to do some exercises. Facer has well designed a set of moves for his cats. He is now asking you to supervise the cats to do his exercises. Facer's great exercise for cats contains three different moves:
g i : Let the ith cat take a peanut.
e i : Let the ith cat eat all peanuts it have.
s i j : Let the ith cat and jth cat exchange their peanuts.
All the cats perform a sequence of these moves and must repeat it m times! Poor cats! Only Facer can come up with such embarrassing idea. 
You have to determine the final number of peanuts each cat have, and directly give them the exact quantity in order to save them.

Input

The input file consists of multiple test cases, ending with three zeroes "0 0 0". For each test case, three integers nm and k are given firstly, where n is the number of cats and k is the length of the move sequence. The following k lines describe the sequence.
(m≤1,000,000,000, n≤100, k≤100)

Output

For each test case, output n numbers in a single line, representing the numbers of peanuts the cats have.

Sample Input

3 1 6
g 1
g 2
g 2
s 1 2
g 3
e 2
0 0 0

Sample Output

2 0 1

Source

PKU Campus 2009 (POJ Monthly Contest – 2009.05.17), Facer

题目大意:
有N只猫,K次操作(得花生、吃花生、交换花生),重复M次。问最后每只猫各有多少花生剩余。

解题思路:
这道题目的巧妙之处就是构造单位矩阵,从而实现三种操作。

[POJ 3735] Training little cats (构造矩阵、矩阵快速幂)_第1张图片
之后便能用矩阵快速幂了。

另外还有两个trick。
1. 因为矩阵的乘法是O(N^3)。复杂度高。这道题直接搞会T。而我们可以发现,矩阵乘法都是稀疏矩阵,稀疏矩阵乘法有优化。
/*
    稀疏矩阵乘法优化
*/
for (int i = 0; i < n; i++)
    for (int j = 0; j < m; j++) {
        if (!a[i][j]) continue;  //稀疏矩阵乘法优化
        for (int k = 0; k < b.m; k++)
            tmp.a[i][k] += a[i][j] * b.a[j][k];
    }

2. 虽然M,N,K都是 int 范围的,但是操作之后,每只猫的花生数量会超 int。

代码:
/*
ID: [email protected]
PROG:
LANG: C++
*/
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<string>
#include<fstream>
#include<cstring>
#include<ctype.h>
#include<iostream>
#include<algorithm>
#define INF (1<<30)
#define PI acos(-1.0)
#define mem(a, b) memset(a, b, sizeof(a))
#define For(i, n) for (int i = 0; i < n; i++)
typedef long long ll;
using namespace std;
const int maxn = 110;
const int maxm = 110;
const int mod = 10000;
struct Matrix {
    int n, m;
    ll a[maxn][maxm];
    void clear() {
        n = m = 0;
        memset(a, 0, sizeof(a));
    }
    Matrix operator * (const Matrix &b) const {
        Matrix tmp;
        tmp.clear();
        tmp.n = n; tmp.m = b.m;
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++) {
                if (!a[i][j]) continue;  //稀疏矩阵乘法优化
                for (int k = 0; k < b.m; k++)
                    tmp.a[i][k] += a[i][j] * b.a[j][k];
            }
        return tmp;
    }
};
int n, k, m;
void init(int n, Matrix &I) {
    for (int i = 0; i <= n; i++) {
        for (int j = 0; j <= n; j++) {
            I.a[i][j] = 0LL;
        }
        I.a[i][i] = 1LL;
    }
    I.n = I.m = n + 1;

}
Matrix Matrix_pow(Matrix A, int k) {
    Matrix res;
    init(n, res);
    while(k) {
        if (k & 1) res = res * A;
        k >>= 1;
        A = A * A;
    }
    return res;
}
int main () {
    Matrix A, I, res;
    while(scanf("%d%d%d", &n, &m, &k)) {
        if (m == 0 && n == 0 && k == 0) {
            break;
        }
        A.clear();
        A.n = n + 1; A.m = 1;
        A.a[n][0] = 1LL;
        char ch;
        int u, v;
        init(n, res);
        while(k--) {
            init(n, I);
            getchar();
            scanf("%c", &ch);
            if (ch == 'g') {
                scanf("%d", &u);
                I.a[u - 1][n] = 1LL;
            }
            if (ch == 's') {
                scanf("%d%d", &u, &v);
                I.a[u - 1][u - 1] = 0LL; I.a[u - 1][v - 1] = 1LL;
                I.a[v - 1][v - 1] = 0LL; I.a[v - 1][u - 1] = 1LL;
            }
            if (ch == 'e') {
                scanf("%d", &u);
                I.a[u - 1][u - 1] = 0LL;
            }
            res = I * res;  //每次操作时,I应该乘在前面,因为矩阵乘法没有交换律
        }
        Matrix tmp = Matrix_pow(res, m);
        tmp = tmp * A;
        for (int i = 0; i < n; i++) {
            printf("%lld ", tmp.a[i][0]);
        }
        cout<<endl;
    }
    return 0;
}

上述图片来自: http://blog.csdn.net/magicnumber/article/details/6217602

你可能感兴趣的:([POJ 3735] Training little cats (构造矩阵、矩阵快速幂))