求最大公约数的算法

更相减损术

更相减损术,又称"等值算法"

关于约分问题,实质是如何求分子,分母最大公约数的问题。《九章算术》中介绍了这个方法,叫做”更相减损术”,数学家刘徽对此法进行了明确的注解和说明,是一个实用的数学方法。

例:今有九十一分之四十九,问约之得几何?

我们用(91,49)表示9149的最大公约数.按刘徽所说,分别列出分子,分母。

“以少减多,更相减损,求其等也,以等数约之,等数约之,即除也,其所以相减者皆等数之重叠,故以等数约之。”

译文如下:

约分的法则是:若分子、分母均为偶数时,可先被2除,否则,将分子与分母之数列在它处,然后以小数减大数,辗转相减,求它们的最大公约数,用最大公约数去约简分子与分母。

其与古希腊欧几里德所著的《几何原本》中卷七第一个命题所论的相同。列式如下:

91 49

42 49

42 7

35 7

28 7

21 7

14 7

7  7

这里得到的7就叫做“等数”,9149都是这等数的重叠(即倍数),7为其公约数.77的最大公约数就是7,(7,7)=7,所以(91,49)=(42,7)=(7,7)=7

更相减损术在现代仍有理论意义和实用价值.吴文俊教授说:“在我国,求两数最大公约数即等数,用更相减损之术,将两数以小减大累减以得之,如求2415的等数,其逐步减损如下表所示:(24,15)->(9,15)->(9,6)->(3,6)->(3,3)

每次所得两数与前两数有相同的等数,两数之值逐步减少,因而到有限步后必然获得相同的两数,也即所求的等数,其理由不证自明。

这个寓理于算不证自明的方法,是完全构造性与机械化的尽可以据此编成程序上机实施”.吴先生的话不仅说明了此法的理论价值,而且指明学习和研究的方向.

更相减损法很有研究价值,它奠定了我国渐近分数,不定分析,同余式论和大衍求一术的理论基础.望能仔细品味。

 

辗转相除法

辗转相除法,又名欧几里德算法(Euclidean algorithm)乃求两个正整数之最大公因子的算法。它是已知最古老的算法,其可追溯至前300年。它首次出现于欧几里德的《几何原本》(第VII卷,命题iii)中,而在中国则可以追溯至东汉出现的《九章算术》。它并不需要把二数作质因子分解。

证明:

设两数为ab(ba),求它们最大公约数(ab)的步骤如下:用ba,得abq......r1(0r)。若r1=0,则(ab)b;若r10,则再用r1b,得br1q......r2(0r2).r20,则(ab)r1,若r20,则继续用r2r1,……如此下去,直到能整除为止。其最后一个非零余数即为(ab)

辗转相除法是利用以下性质来确定两个正整数ab的最大公因子的:

1.ra÷b的余数,gcd(a,b)=gcd(b,r)

2.a和其倍数之最大公因子为a

另一种写法是:

1.a÷b,令r为所得余数(0rb)。若r=0,算法结束;b即为答案。

2.互换:置abbr,并返回第一步。

 

求最大公约数的C/C++算法

//更相减损法

int gcd(int a,int b)

{

    while(a!=b)

    {

       if(a>b)

           a-=b;

       else

           b-=a;

    }

    return a;

}

 

//辗转相除法--递归

int gcd(int a,int b)

{

    if(b==0)

       returna;

    else

       return gcd(b,a%b);

}

 

//辗转相除法--纯循环

int gcd(int a,int b)

{

    int r;

    while(b!=0)

    {

       r=a%b;

       a=b;

       b=r;

    }

    return a;

}

你可能感兴趣的:(求最大公约数的算法)