android palette

所在包目录

android-sdk-windows\extras\android\compatibility\v7\palette\libs

 private void extract(Bitmap bitmap) {

        // 提取颜色
        // Palette palette = Palette.generate(bitmap); 
        Palette.generateAsync(bitmap, new Palette.PaletteAsyncListener() {
            @Override
            public void onGenerated(Palette palette) {
                // 提取
                // 有活力的颜色
                Palette.Swatch vibrant = palette.getVibrantSwatch(); 
                // 有活力的暗色
                Palette.Swatch darkVibrant = palette.getDarkVibrantSwatch(); 
                // 有活力的亮色
                Palette.Swatch lightVibrant = palette.getLightVibrantSwatch(); 
                // 柔和的颜色
                Palette.Swatch muted = palette.getMutedSwatch(); 
                // 柔和的暗色
                Palette.Swatch darkMuted = palette.getDarkMutedSwatch(); 
                // 柔和的亮色
                Palette.Swatch lightMuted = palette.getLightMutedSwatch(); 


                mTextView.setText("有活力的颜色");
                if (vibrant != null) {
                    ll.setBackgroundColor(vibrant.getRgb());
                    mTextView.setBackgroundColor(vibrant.getRgb());
                    mTextView.setTextColor(vibrant.getTitleTextColor());
                }
    }

以下的分析 转载了, 再慢慢看有时间
http://blog.csdn.net/yebo0505/article/details/43234113

第一步,将图片缩小,再整个过程中,可以降低计算量和减少内存的使用,跟不缩小也能达到一样的效果
[java] view plaincopy在CODE上查看代码片派生到我的代码片
/**
* Scale the bitmap down so that it’s smallest dimension is
* {@value #CALCULATE_BITMAP_MIN_DIMENSION}px. If {@code bitmap} is smaller than this, than it
* is returned.
*/
private static Bitmap scaleBitmapDown(Bitmap bitmap) {
final int minDimension = Math.min(bitmap.getWidth(), bitmap.getHeight());

    if (minDimension <= CALCULATE_BITMAP_MIN_DIMENSION) {  
        // If the bitmap is small enough already, just return it  
        return bitmap;  
    }  

    final float scaleRatio = CALCULATE_BITMAP_MIN_DIMENSION / (float) minDimension;  
    return Bitmap.createScaledBitmap(bitmap,  
            Math.round(bitmap.getWidth() * scaleRatio),  
            Math.round(bitmap.getHeight() * scaleRatio),  
            false);  
}  

第二步,将缩小后的图片数据,放在一个int 数组里
[java] view plaincopy在CODE上查看代码片派生到我的代码片
/**
* Factory-method to generate a {@link ColorCutQuantizer} from a {@link Bitmap} object.
*
* @param bitmap Bitmap to extract the pixel data from
* @param maxColors The maximum number of colors that should be in the result palette.
*/
static ColorCutQuantizer fromBitmap(Bitmap bitmap, int maxColors) {
final int width = bitmap.getWidth();
final int height = bitmap.getHeight();

   final int[] pixels = new int[width * height];  
   bitmap.getPixels(pixels, 0, width, 0, 0, width, height);  


   return new ColorCutQuantizer(new ColorHistogram(pixels), maxColors);  

}

第三步,将这个int 数组由小到大排序,就相当于,将一张图片一样的颜色堆在一起,然后计算共有多少种颜色,每种颜色它是多大,这些是在一个叫ColorHistogram(颜色直方图)类里面计算的,用颜色直方图来说,就是共有多少柱颜色,每柱颜色有多高

[java] view plaincopy在CODE上查看代码片派生到我的代码片
/**
* Class which provides a histogram for RGB values.
*/
final class ColorHistogram {

private final int[] mColors;  
private final int[] mColorCounts;  
private final int mNumberColors;  

/** 
 * A new {@link ColorHistogram} instance. 
 * 
 * @param pixels array of image contents 
 */  
ColorHistogram(final int[] pixels) {  
    // Sort the pixels to enable counting below  
    Arrays.sort(pixels);  

    // Count number of distinct colors  
    mNumberColors = countDistinctColors(pixels);  

    // Create arrays  
    mColors = new int[mNumberColors];  
    mColorCounts = new int[mNumberColors];  

    // Finally count the frequency of each color  
    countFrequencies(pixels);  
}  

/** 
 * @return 获取共用多少柱不同颜色 number of distinct colors in the image. 
 */  
int getNumberOfColors() {  
    return mNumberColors;  
}  

/** 
 * @return 获取排好序后的不同颜色的数组  an array containing all of the distinct colors in the image. 
 */  
int[] getColors() {  
    return mColors;  
}  

/** 
 * @return 获取保存每一柱有多高的数组 an array containing the frequency of a distinct colors within the image. 
 */  
int[] getColorCounts() {  
    return mColorCounts;  
}  

//计算共用多少柱不同颜色  
private static int countDistinctColors(final int[] pixels) {  
    if (pixels.length < 2) {  
        // If we have less than 2 pixels we can stop here  
        return pixels.length;  
    }  

    // If we have at least 2 pixels, we have a minimum of 1 color...  
    int colorCount = 1;  
    int currentColor = pixels[0];  

    // Now iterate from the second pixel to the end, counting distinct colors  
    for (int i = 1; i < pixels.length; i++) {  
        // If we encounter a new color, increase the population  
        if (pixels[i] != currentColor) {  
            currentColor = pixels[i];  
            colorCount++;  
        }  
    }  

    return colorCount;  
}  

//计算每一柱有多高  
private void countFrequencies(final int[] pixels) {  
    if (pixels.length == 0) {  
        return;  
    }  

    int currentColorIndex = 0;  
    int currentColor = pixels[0];  

    mColors[currentColorIndex] = currentColor;  
    mColorCounts[currentColorIndex] = 1;  

    Log.i("pixels.length",""+ pixels.length);  

    if (pixels.length == 1) {  
        // If we only have one pixel, we can stop here  
        return;  
    }  

    // Now iterate from the second pixel to the end, population distinct colors  
    for (int i = 1; i < pixels.length; i++) {  
        if (pixels[i] == currentColor) {  
            // We've hit the same color as before, increase population  
            mColorCounts[currentColorIndex]++;  
        } else {  
            // We've hit a new color, increase index  
            currentColor = pixels[i];  

            currentColorIndex++;  
            mColors[currentColorIndex] = currentColor;  
            mColorCounts[currentColorIndex] = 1;  
        }  
    }  
}  

}
第四步,将各种颜色,根据RGB转HSL算法,得出对应的HSL(H: Hue 色相,S:Saturation 饱和度L Lightness 明度),根据特定的条件,比如是明度L是否接近白色,黑色,还有一个判断叫isNearRedILine,解释是@return true if the color lies close to the red side of the I line(接近红色私密区域附近?).,然后根据这三个条件,过滤掉这些颜色,什么是HSL和RGB转HSL算法可以查看下百科,比较有详细说明

[java] view plaincopy在CODE上查看代码片派生到我的代码片
/**
* Private constructor.
*
* @param colorHistogram histogram representing an image’s pixel data
* @param maxColors The maximum number of colors that should be in the result palette.
*/
private ColorCutQuantizer(ColorHistogram colorHistogram, int maxColors) {
final int rawColorCount = colorHistogram.getNumberOfColors();
final int[] rawColors = colorHistogram.getColors();//颜色数组
final int[] rawColorCounts = colorHistogram.getColorCounts();//对应rawColors每一个颜色数组的大小

   // First, lets pack the populations into a SparseIntArray so that they can be easily  
   // retrieved without knowing a color's index  
   mColorPopulations = new SparseIntArray(rawColorCount);  
   for (int i = 0; i < rawColors.length; i++) {  
       mColorPopulations.append(rawColors[i], rawColorCounts[i]);  
   }  

   // Now go through all of the colors and keep those which we do not want to ignore  
   mColors = new int[rawColorCount];  
   int validColorCount = 0;  
   for (int color : rawColors) {  
       if (!shouldIgnoreColor(color)) {  
           mColors[validColorCount++] = color;  
       }  
   }  
   Log.d("mColors length", ""+mColors.length);  
   if (validColorCount <= maxColors) {  
       // The image has fewer colors than the maximum requested, so just return the colors  
       mQuantizedColors = new ArrayList<Swatch>();  

       for (final int color : mColors) {  
           mQuantizedColors.add(new Swatch(color, mColorPopulations.get(color)));  
       }  
   } else {  
       // We need use quantization to reduce the number of colors  
       mQuantizedColors = quantizePixels(validColorCount - 1, maxColors);  
   }  

}
[java] view plaincopy在CODE上查看代码片派生到我的代码片


[java] view plaincopy在CODE上查看代码片派生到我的代码片
这里截了张图看看
[java] view plaincopy在CODE上查看代码片派生到我的代码片

第五步,根据是各种亮度,饱和度的取值范围,比如有活力的暗色,有活力的亮色,柔和的颜色,柔和的暗色,柔和的亮色,找到对应的颜色
[java] view plaincopy在CODE上查看代码片派生到我的代码片
private Swatch findColor(float targetLuma, float minLuma, float maxLuma,
float targetSaturation, float minSaturation, float maxSaturation) {
Swatch max = null;
float maxValue = 0f;

   for (Swatch swatch : mSwatches) {  
       final float sat = swatch.getHsl()[1];  
       final float luma = swatch.getHsl()[2];  

       if (sat >= minSaturation && sat <= maxSaturation &&  
               luma >= minLuma && luma <= maxLuma &&  
               !isAlreadySelected(swatch)) {  
           float thisValue = createComparisonValue(sat, targetSaturation, luma, targetLuma,  
                   swatch.getPopulation(), mHighestPopulation);  
           if (max == null || thisValue > maxValue) {  
               max = swatch;  
               maxValue = thisValue;  
           }  
       }  
   }  

   return max;  

}

你可能感兴趣的:(android palette)