- Recurring Decimals&&http://acm.hust.edu.cn:8080/judge/contest/view.action?cid=9661#problem/B

Description

A decimal representation of an integer can be transformed to another integer by rearranging the order of digits. Let us make a sequence using this fact.

A non-negative integer a0 and the number of digits L are given first. Applying the following rules, we obtain ai+1 from ai.

  1. Express the integer ai in decimal notation with L digits. Leading zeros are added if necessary. For example, the decimal notation with six digits of the number 2012 is 002012.
  2. Rearranging the digits, find the largest possible integer and the smallest possible integer; In the example above, the largest possible integer is 221000 and the smallest is 000122 = 122.
  3. A new integer ai+1 is obtained by subtracting the smallest possible integer from the largest. In the example above, we obtain 220878 subtracting 122 from 221000.

When you repeat this calculation, you will get a sequence of integers a0 , a1 , a2 , ... .

For example, starting with the integer 83268 and with the number of digits 6, you will get the following sequence of integers a0 , a1 , a2 , ... .

a 0 = 083268
a 1 = 886320 − 023688 = 862632
a 2 = 866322 − 223668 = 642654
a 3 = 665442 − 244566 = 420876
a 4 = 876420 − 024678 = 851742
a 5 = 875421 − 124578 = 750843
a 6 = 875430 − 034578 = 840852
a 7 = 885420 − 024588 = 860832
a 8 = 886320 − 023688 = 862632

Because the number of digits to express integers is fixed, you will encounter occurrences of the same integer in the sequence a0 , a1 , a2 , ... eventually. Therefore you can always find a pair of i and j that satisfies the condition ai = aj (i > j ). In the example above, the pair (i = 8, j = 1) satisfies the condition because a8 = a1 = 862632.

Write a program that, given an initial integer a0 and a number of digits L, finds the smallest i that satisfies the condition ai = aj (i > j ).

Input

The input consists of multiple datasets. A dataset is a line containing two integers a0 and L separated by a space. a0 and L represent the initial integer of the sequence and the number of digits, respectively, where 1 ≤ L ≤ 6 and 0 ≤ a0 < 10L .

The end of the input is indicated by a line containing two zeros; it is not a dataset.

Output

For each dataset, find the smallest number i that satisfies the condition ai = aj (i > j ) and print a line containing three integers, j , ai and ij. Numbers should be separated by a space. Leading zeros should be suppressed. Output lines should not contain extra characters.

You can assume that the above i is not greater than 20.

Sample Input

2012 4
83268 6
1112 4
0 1
99 2
0 0

Output for the Sample Input

3 6174 1
1 862632 7
5 6174 1
0 0 1
1 0 1
水题,和nyist上的6174题很像。。。
#include<iostream>
#include<string.h>
#include<string>
#include<cstdio>
#include<algorithm>
#include<set>
#define N 1000005
using namespace std;
bool a[N];
int b[N];
int c[10];
int main()
{
	int n,m;
	while(~scanf("%d%d",&n,&m))
	{
		if(!n&&!m) break;
		memset(a,false,sizeof(a));
		memset(b,0,sizeof(b));
		int res=0;
		a[n]=true;
		b[n]=res++;
		while(1)
		{
			for(int i=0;i<m;++i) c[i]=0;
			 int cnt=0;
			 while(n)
			 {
				 int b=n%10;
				 c[cnt++]=b;
				 n/=10;
			 }
			 sort(c,c+m);
			 int sum1=0,sum2=0;
			 for(int i=0;i<m;++i) sum1=sum1*10+c[i];
			 for(int i=m-1;i>=0;--i) sum2=sum2*10+c[i];
			 n=sum2-sum1;
			 if(a[n]) {printf("%d %d %d\n",b[n],n,res-b[n]);break;}
			 else {a[n]=1;b[n]=res++;}
		}
		
	}return 0;
}


你可能感兴趣的:(Integer,express,input,dataset,output,pair)