这个Easy Problem确实挺Easy的,但就是细节很多,要考虑的主要有一下几点:
一、任一一条木板于x轴平行时,答案为0;
二、一条木板在另一条上方时,答案为0(水是垂直掉下来的,这种情况掉不到两块木板中间);
三、两木板没有交点时,答案为0;
四、有点的情况下,求相应的面积即可。
题目不难,但细节比较多,代码会比较长。计算几何很多时候都有这种特点吧!
/* * Author: stormdpzh * Created Time: 2013/3/29 13:32:50 * File Name: poj_2826.cpp */ #include <iostream> #include <cstdio> #include <sstream> #include <cstring> #include <string> #include <cmath> #include <vector> #include <queue> #include <stack> #include <map> #include <set> #include <list> #include <algorithm> #include <functional> #define sz(v) ((int)(v).size()) #define rep(i, n) for(int i = 0; i < n; i++) #define repf(i, a, b) for(int i = a; i <= b; i++) #define repd(i, a, b) for(int i = a; i >= b; i--) #define out(n) printf("%d\n", n) #define mset(a, b) memset(a, b, sizeof(a)) #define lint long long using namespace std; const int INF = 1 << 30; const int MaxN = 100005; const double eps = 1e-8; int sgn(double d) { if(d > eps) return 1; if(d < -eps) return -1; return 0; } struct Point { double x, y; Point () {} Point(double _x, double _y) : x(_x), y(_y) {} void read() { scanf("%lf%lf", &x, &y); } }; Point l1[2], l2[2]; Point operator - (const Point &p1, const Point &p2) { return Point(p1.x - p2.x, p1.y - p2.y); } double operator * (const Point &p1, const Point &p2) { return p1.x * p2.y - p1.y * p2.x; } bool get_segment_intersection(const Point &p1, const Point &p2, const Point &p3, const Point &p4, Point &c) { double d1 = (p2 - p1) * (p3 - p1); double d2 = (p2 - p1) * (p4 - p1); double d3 = (p4 - p3) * (p1 - p3); double d4 = (p4 - p3) * (p2 - p3); int s1 = sgn(d1), s2 = sgn(d2), s3 = sgn(d3), s4 = sgn(d4); if(s1 * s2 > 0 || s3 * s4 > 0 || sgn(d1 - d2) == 0) return false; c = Point((p3.x * d2 - p4.x * d1) / (d2 - d1), (p3.y * d2 - p4.y * d1) / (d2 - d1)); return true; } bool get_line_intersection(const Point &p1, const Point &p2, const Point &p3, const Point &p4, Point &c) { double d1 = (p2 - p1) * (p3 - p1); double d2 = (p2 - p1) * (p4 - p1); if(0 == sgn(d1 - d2)) return false; c = Point((p3.x * d2 - p4.x * d1) / (d2 - d1), (p3.y * d2 - p4.y * d1) / (d2 - d1)); return true; } bool is_parallel_to_x_axis(const Point p1, const Point p2) { if(sgn(p1.y - p2.y) == 0) return true; return false; } double gao(Point cr) { Point l3[2]; double x1, y1, x2, y2; Point seg1[2], seg2[2]; Point tmp; seg1[0] = seg2[0] = cr; if(sgn(l1[0].y - l1[1].y) > 0) { x1 = l1[0].x; y1 = l1[0].y; } else { x1 = l1[1].x; y1 = l1[1].y; } if(sgn(l2[0].y - l2[1].y) > 0) { x2 = l2[0].x; y2 = l2[0].y; } else { x2 = l2[1].x; y2 = l2[1].y; } if(sgn(y1 - y2) < 0) { if(sgn(l1[0].x - l1[1].x) != 0) { int s = sgn((l1[0].y - l1[1].y) / (l1[0].x - l1[1].x)); bool f = get_line_intersection(l2[0], l2[1], Point(x1, y1), Point(x1, y1 + 1.0), tmp); if(f && sgn(tmp.y - y1) >= 0) { if(s > 0) { if(sgn(x2 - tmp.x) >= 0) return 0.0; } if(s < 0) { if(sgn(x2 - tmp.x) <= 0) return 0.0; } } } l3[0] = Point(x1, y1); l3[1] = Point(x1 + 1.0, y1); get_line_intersection(l3[0], l3[1], l2[0], l2[1], tmp); } else { if(sgn(l2[0].x - l2[1].x) != 0) { int s = sgn((l2[0].y - l2[1].y) / (l2[0].x - l2[1].x)); bool f = get_line_intersection(l1[0], l1[1], Point(x2, y2), Point(x2, y2 + 1.0), tmp); if(f && sgn(tmp.y - y2) >= 0) { if(s > 0) { if(sgn(x1 - tmp.x) >= 0) return 0.0; } if(s < 0) { if(sgn(x1 - tmp.x) <= 0) return 0.0; } } } l3[0] = Point(x2, y2); l3[1] = Point(x2 + 1.0, y2); get_line_intersection(l3[0], l3[1], l1[0], l1[1], tmp); } seg1[1] = l3[0]; seg2[1] = tmp; return fabs((seg1[1] - seg1[0]) * (seg2[1] - seg2[0])) / 2.0; } int main() { int t; Point cross_p; scanf("%d", &t); while(t--) { l1[0].read(); l1[1].read(); l2[0].read(); l2[1].read(); if(is_parallel_to_x_axis(l1[0], l1[1]) || is_parallel_to_x_axis(l2[0], l2[1])) { puts("0.00"); continue ; } bool f = get_segment_intersection(l1[0], l1[1], l2[0], l2[1], cross_p); if(!f) { puts("0.00"); continue ; } printf("%.2lf\n", gao(cross_p)); } return 0; }