HDOJ, 杭电1032, The 3n+1 problem. POJ, 北大OJ,1207....数学题。。又一发

一个英文题。。。

Uva的第一道题目。HDOJ的1032题,POJ的1207题、、、

坑爹的POJ居然不识别 _int64,不过还好,他没要求大于int型的数字。。。所以,用int,AC险过了。。。

题目的大致意思就是,对于一个数字(1-10000),如果是偶数就将它除以二,如果是奇数就将它3*n+1, 如此循环必会得到一, 其中循环的次数为长度。

现在输入m, n ,要求m和n之间(包括m和n)的数字转换到1的循环长度最大的长度。

输出的话,直接看examp吧。。。。


代码如下:

/***** HDOJ 1032 The 3n+1 problem ********/

/******** written by C_Shit_Hu ************/

////////////////看似水题,其实大有学问吧///////////////
//大有学问的原因的是当这个数字足够大的时候,为避免超时,这个完全可当做一个算法题目求解///
/****************************************************************************/
/* 
Description
Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive).
In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs. 

Consider the following algorithm: 
1. 		 input n
2. 		 print n	  
3. 		 if n = 1 then STOP
4. 		 	if n is odd then   n <-- 3n+1
5. 		 		 else   n <-- n/2
6. 		 GOTO 2	

Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 
It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value.
Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. 
It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.) 
Given an input n, it is possible to determine the number of numbers printed before the 1 is printed. 
For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16. 
For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j. 

Input
The input will consist of a series of pairs of integers i and j, one pair of integers per line. 
All integers will be less than 10,000 and greater than 0. 
You should process all pairs of integers and for each pair determine the maximum cycle length over all integers 
between and including i and j. 
  
Output
For each pair of input integers i and j you should output i, j, 
and the maximum cycle length for integers between and including i and j.
These three numbers should be separated by at least one space with all three numbers on one line 
and with one line of output for each line of input. 
The integers i and j must appear in the output in the same order in which they appeared in the input 
and should be followed by the maximum cycle length (on the same line).
*/
/****************************************************************************/


// 
#include <stdio.h>

int main()
{
    _int64 m, n, small, big, t, i, max, sum;        //可直接用int,那么下面的输入输出改为%d即可。
    while(scanf("%I64d%I64d", &m, &n ) != EOF && m>0 && n>0 )
    {
		small = m; 
		big = n ;
        if(small>big)         // 将m和n的值保持在m小于n
        {
            t = small;
            small = big;
            big = t;
		}
        max = 0;       // 最大的长度归零
        for(i = small; i<=big; i++)    // 从m到n一次尝试所有数字
        {
			small = i; sum = 1 ;      // sum记录变化长度
            while(small-1)            //等于1时就结束
            {
                if(small%2)
                    small = 3 * small + 1;
                else
                    small = small / 2;
                sum++;
            }                   // 循环一次,sum自增1
            if(sum>max)
				max = sum;
        }

		printf("%I64d %I64d %I64d\n", m, n, max) ;

	}
	
    return 0;
}


/******************************************************/
/********************  心得体会  **********************/
/*
果然是水题。。。
还做的那么慢。。

  水水更健康!!!
*/
/******************************************************/


你可能感兴趣的:(HDOJ, 杭电1032, The 3n+1 problem. POJ, 北大OJ,1207....数学题。。又一发)