这里说的很好,把求逆序的步骤说的很明白,我也是看完才懂的,之前自己想了很久就是不明白为什么可以用树状数组求逆序
转载:
树状数组,具体的说是 离散化+树状数组。这也是学习树状数组的第一题.
算法的大体流程就是:
1.先对输入的数组离散化,使得各个元素比较接近,而不是离散的,
2.接着,运用树状数组的标准操作来累计数组的逆序数。
算法详细解释:
1.解释为什么要有离散的这么一个过程?
刚开始以为999.999.999这么一个数字,对于int存储类型来说是足够了。
还有只有500000个数字,何必要离散化呢?
刚开始一直想不通,后来明白了,后面在运用树状数组操作的时候,
用到的树状数组C[i]是建立在一个有点像位存储的数组的基础之上的,
不是单纯的建立在输入数组之上。
比如输入一个9 1 0 5 4,那么C[i]树状数组的建立是在,
下标 0 1 2 3 4 5 6 7 8 9
数组 1 1 0 0 1 1 0 0 0 1
现在由于999999999这个数字相对于500000这个数字来说是很大的,
所以如果用数组位存储的话,那么需要999999999的空间来存储输入的数据。
这样是很浪费空间的,题目也是不允许的,所以这里想通过离散化操作,
使得离散化的结果可以更加的密集。
2. 怎么对这个输入的数组进行离散操作?
离散化是一种常用的技巧,有时数据范围太大,可以用来放缩到我们能处理的范围;
因为其中需排序的数的范围0---999 999 999;显然数组不肯能这么大;
而N的最大范围是500 000;故给出的数一定可以与1.。。。N建立一个一一映射;
①当然用map可以建立,效率可能低点;
②这里用一个结构体
struct Node
{
int v,ord;
}p[510000];和一个数组a[510000];
其中v就是原输入的值,ord是下标;然后对结构体按v从小到大排序;
此时,v和结构体的下标就是一个一一对应关系,而且满足原来的大小关系;
for(i=1;i<=N;i++) a[p[i].ord]=i;
然后a数组就存储了原来所有的大小信息;
比如 9 1 0 5 4 ------- 离散后aa数组就是 5 2 1 4 3;
具体的过程可以自己用笔写写就好了。
3. 离散之后,怎么使用离散后的结果数组来进行树状数组操作,计算出逆序数?
如果数据不是很大, 可以一个个插入到树状数组中,
每插入一个数, 统计比他小的数的个数,
对应的逆序为 i- getsum( aa[i] ),
其中 i 为当前已经插入的数的个数,
getsum( aa[i] )为比 aa[i] 小的数的个数,
i- sum( aa[i] ) 即比 aa[i] 大的个数, 即逆序的个数
但如果数据比较大,就必须采用离散化方法
假设输入的数组是9 1 0 5 4, 离散后的结果aa[] = {5,2,1,4,3};
在离散结果中间结果的基础上,那么其计算逆序数的过程是这么一个过程。
1,输入5, 调用upDate(5, 1),把第5位设置为1
1 2 3 4 5
0 0 0 0 1
计算1-5上比5小的数字存在么? 这里用到了树状数组的getSum(5) = 1操作,
现在用输入的下标1 - getSum(5) = 0 就可以得到对于5的逆序数为0。
2. 输入2, 调用upDate(2, 1),把第2位设置为1
1 2 3 4 5
0 1 0 0 1
计算1-2上比2小的数字存在么? 这里用到了树状数组的getSum(2) = 1操作,
现在用输入的下标2 - getSum(2) = 1 就可以得到对于2的逆序数为1。
3. 输入1, 调用upDate(1, 1),把第1位设置为1
1 2 3 4 5
1 1 0 0 1
计算1-1上比1小的数字存在么? 这里用到了树状数组的getSum(1) = 1操作,
现在用输入的下标 3 - getSum(1) = 2 就可以得到对于1的逆序数为2。
4. 输入4, 调用upDate(4, 1),把第5位设置为1
1 2 3 4 5
1 1 0 1 1
计算1-4上比4小的数字存在么? 这里用到了树状数组的getSum(4) = 3操作,
现在用输入的下标4 - getSum(4) = 1 就可以得到对于4的逆序数为1。
5. 输入3, 调用upDate(3, 1),把第3位设置为1
1 2 3 4 5
1 1 1 1 1
计算1-3上比3小的数字存在么? 这里用到了树状数组的getSum(3) = 3操作,
现在用输入的下标5 - getSum(3) = 2 就可以得到对于3的逆序数为2。
6. 0+1+2+1+2 = 6 这就是最后的逆序数
分析一下时间复杂度,首先用到快速排序,时间复杂度为O(NlogN),
后面是循环插入每一个数字,每次插入一个数字,分别调用一次upData()和getSum()
外循环N, upData()和getSum()时间O(logN) => 时间复杂度还是O(NlogN).
最后总的还是O(NlogN).
poj 2299 :
Time Limit: 7000MS | Memory Limit: 65536K | |
Total Submissions: 26864 | Accepted: 9642 |
Description
Input
Output
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Sample Output
6 0
Source
题意:给定n个数,要求这些数构成的逆序对的个数。除了用归并排序来求逆序对个数,还可以使用树状数组来求解。
树状数组求解的思路:开一个能大小为这些数的最大值的树状数组,并全部置0。从头到尾读入这些数,每读入一个数就更新树状数组,查看它前面比它小的已出现过的有多少个数sum,然后用当前位置减去该sum,就可以得到当前数导致的逆序对数了。把所有的加起来就是总的逆序对数。
题目中的数都是独一无二的,这些数最大值不超过999999999,但n最大只是500000。如果采用上面的思想,必然会导致空间的巨大浪费,而且由于内存的限制,我们也不可能开辟这么大的数组。因此可以采用一种称为“离散化”的方式,把原始的数映射为1-n一共n个数,这样就只需要500000个int类型的空间。
<span style="color:#4b4b4b;font-size:12px;">#include<iostream> #include<algorithm> #include<cstring> #include<cstdio> #include<cmath> #include<queue> using namespace std; struct node{ int v; int ord; }a[500001]; int c[500001],aa[500001]; int n; __int64 ans; bool cmp(node a,node b) { return a.v<b.v; } int lowbit(int p) { return p&(-p); } int sum(int p) { int s=0; while(p>0) { s+=c[p]; p-=lowbit(p); } return s; } void up(int p,int k) { while(p<=333)</span><strong style="color: rgb(75, 75, 75);"><span style="font-size:14px;">//333时说明输入的数据范围只能从0~332 </span></strong><span style="color:#4b4b4b;font-size:12px;"> { c[p]+=k; p+=lowbit(p); } } int main() { int i,m; while(scanf("%d",&n)&&n) { memset(c,0,sizeof(c)); ans=0; m=0; for(i=1;i<=n;i++) { scanf("%d",&a[i].v); // a[i].ord=i; up(a[i].v+1,1);</span><strong style="font-size:12px;"><span style="color:#ff0000;">//因为数据是从零开始,所以要加1,树状数组下标是从一开始的</span></strong><span style="color:#4b4b4b;font-size:12px;"> ans+=i-sum(a[i].v+1); } printf("%I64d\n",ans); } return 0; } </span>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
|
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <string.h>
using
namespace
std;
const
int
maxn=500005;
int
n;
int
aa[maxn];
//离散化后的数组
int
c[maxn];
//树状数组
struct
Node{
int
v;
int
order;
}in[maxn];
int
lowbit(
int
x)
{
return
x&(-x);
}
void
update(
int
t,
int
value)
{
int
i;
for
(i=t;i<=n;i+=lowbit(i))//离散化后输入数据范围不受n控制,n只表示输入的数据个数
{
c[i]+=value;
}
}
int
getsum(
int
x)
{
int
i;
int
temp=0;
for
(i=x;i>=1;i-=lowbit(i))
{
temp+=c[i];
}
return
temp;
}
bool
cmp(Node a ,Node b)
{
return
a.v<b.v;
}
int
main()
{
int
i,j;
while
(
scanf
(
"%d"
,&n)==1 && n)
{
//离散化
for
(i=1;i<=n;i++)
{
scanf
(
"%d"
,&in[i].v);
in[i].order=i;
}
sort(in+1,in+n+1,cmp);
for
(i=1;i<=n;i++) aa[in[i].order]=i;
//树状数组求逆序
memset
(c,0,
sizeof
(c));
long
long
ans=0;
for
(i=1;i<=n;i++)
{
update(aa[i],1);//因为离散化后就算之前输入的数据有0,离散化后的结果变为1,故不用加一处理
ans+=i-getsum(aa[i]);
}
cout<<ans<<endl;
}
return
0;
}
|