环境:Vmware 8.0 和Ubuntu11.04
Hadoop 实战之MapReduce链接作业之预处理
第一步:首先创建一个工程命名为HadoopTest.目录结构如下图:
第二步: 在/home/tanglg1987目录下新建一个start.sh脚本文件,每次启动虚拟机都要删除/tmp目录下的全部文件,重新格式化namenode,代码如下:
sudo rm -rf /tmp/* rm -rf /home/tanglg1987/hadoop-0.20.2/logs hadoop namenode -format hadoop datanode -format start-all.sh hadoop fs -mkdir input hadoop dfsadmin -safemode leave
第三步:给start.sh增加执行权限并启动hadoop伪分布式集群,代码如下:
chmod 777 /home/tanglg1987/ start.sh ./start.sh
执行过程如下:
12/10/15 23:05:38 INFO namenode.NameNode: STARTUP_MSG:
/************************************************************
STARTUP_MSG: Starting NameNode
STARTUP_MSG: host = tanglg1987/127.0.1.1
STARTUP_MSG: args = [-format]
STARTUP_MSG: version = 0.20.2
STARTUP_MSG: build = https://svn.apache.org/repos/asf/hadoop/common/branches/branch-0.20 -r 911707; compiled by 'chrisdo' on Fri Feb 19 08:07:34 UTC 2010
************************************************************/
12/10/15 23:05:39 INFO namenode.FSNamesystem: fsOwner=tanglg1987,tanglg1987,adm,dialout,cdrom,plugdev,lpadmin,admin,sambashare
12/10/15 23:05:39 INFO namenode.FSNamesystem: supergroup=supergroup
12/10/15 23:05:39 INFO namenode.FSNamesystem: isPermissionEnabled=true
12/10/15 23:05:39 INFO common.Storage: Image file of size 100 saved in 0 seconds.
12/10/15 23:05:39 INFO common.Storage: Storage directory /tmp/hadoop-tanglg1987/dfs/name has been successfully formatted.
12/10/15 23:05:39 INFO namenode.NameNode: SHUTDOWN_MSG:
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at tanglg1987/127.0.1.1
************************************************************/
12/10/15 23:05:40 INFO datanode.DataNode: STARTUP_MSG:
/************************************************************
STARTUP_MSG: Starting DataNode
STARTUP_MSG: host = tanglg1987/127.0.1.1
STARTUP_MSG: args = [-format]
STARTUP_MSG: version = 0.20.2
STARTUP_MSG: build = https://svn.apache.org/repos/asf/hadoop/common/branches/branch-0.20 -r 911707; compiled by 'chrisdo' on Fri Feb 19 08:07:34 UTC 2010
************************************************************/
Usage: java DataNode
[-rollback]
12/10/15 23:05:40 INFO datanode.DataNode: SHUTDOWN_MSG:
/************************************************************
SHUTDOWN_MSG: Shutting down DataNode at tanglg1987/127.0.1.1
************************************************************/
starting namenode, logging to /home/tanglg1987/hadoop-0.20.2/bin/../logs/hadoop-tanglg1987-namenode-tanglg1987.out
localhost: starting datanode, logging to /home/tanglg1987/hadoop-0.20.2/bin/../logs/hadoop-tanglg1987-datanode-tanglg1987.out
localhost: starting secondarynamenode, logging to /home/tanglg1987/hadoop-0.20.2/bin/../logs/hadoop-tanglg1987-secondarynamenode-tanglg1987.out
starting jobtracker, logging to /home/tanglg1987/hadoop-0.20.2/bin/../logs/hadoop-tanglg1987-jobtracker-tanglg1987.out
localhost: starting tasktracker, logging to /home/tanglg1987/hadoop-0.20.2/bin/../logs/hadoop-tanglg1987-tasktracker-tanglg1987.out
Safe mode is OFF
第四步:上传本地文件到hdfs
在/home/tanglg1987目录下新建Customer.txt内容如下:
100 tom 90 101 mary 85 102 kate 60
上传本地文件到hdfs:
hadoop fs -put /home/tanglg1987/ChainMapper.txt input
第五步:新建一个ChainMapperDemo.java,代码如下:
package com.baison.action; import java.io.IOException; import java.util.*; import java.lang.String; import org.apache.hadoop.fs.Path; import org.apache.hadoop.conf.*; import org.apache.hadoop.io.*; import org.apache.hadoop.mapred.*; import org.apache.hadoop.util.*; import org.apache.hadoop.mapred.lib.*; public class ChainMapperDemo { public static class Map00 extends MapReduceBase implements Mapper<Text, Text, Text, Text> { public void map(Text key, Text value, OutputCollector output, Reporter reporter) throws IOException { Text ft = new Text("100"); if (!key.equals(ft)) { output.collect(key, value); } } } public static class Map01 extends MapReduceBase implements Mapper<Text, Text, Text, Text> { public void map(Text key, Text value, OutputCollector output, Reporter reporter) throws IOException { Text ft = new Text("101"); if (!key.equals(ft)) { output.collect(key, value); } } } public static class Reduce extends MapReduceBase implements Reducer<Text, Text, Text, Text> { public void reduce(Text key, Iterator values, OutputCollector output, Reporter reporter) throws IOException { while (values.hasNext()) { output.collect(key, values.next()); } } } public static void main(String[] args) throws Exception { String[] arg = { "hdfs://localhost:9100/user/tanglg1987/input/ChainMapper.txt", "hdfs://localhost:9100/user/tanglg1987/output" }; JobConf conf = new JobConf(ChainMapperDemo.class); conf.setJobName("ChainMapperDemo"); conf.setInputFormat(KeyValueTextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); ChainMapper cm = new ChainMapper(); JobConf mapAConf = new JobConf(false); cm.addMapper(conf, Map00.class, Text.class, Text.class, Text.class, Text.class, true, mapAConf); JobConf mapBConf = new JobConf(false); cm.addMapper(conf, Map01.class, Text.class, Text.class, Text.class, Text.class, true, mapBConf); conf.setReducerClass(Reduce.class); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(Text.class); FileInputFormat.setInputPaths(conf, new Path(arg[0])); FileOutputFormat.setOutputPath(conf, new Path(arg[1])); JobClient.runJob(conf); } }
第六步:Run On Hadoop,运行过程如下:
12/10/17 21:05:53 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
12/10/17 21:05:53 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
12/10/17 21:05:53 WARN mapred.JobClient: No job jar file set. User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
12/10/17 21:05:54 INFO mapred.FileInputFormat: Total input paths to process : 1
12/10/17 21:05:54 INFO mapred.JobClient: Running job: job_local_0001
12/10/17 21:05:54 INFO mapred.FileInputFormat: Total input paths to process : 1
12/10/17 21:05:54 INFO mapred.MapTask: numReduceTasks: 1
12/10/17 21:05:54 INFO mapred.MapTask: io.sort.mb = 100
12/10/17 21:05:54 INFO mapred.MapTask: data buffer = 79691776/99614720
12/10/17 21:05:54 INFO mapred.MapTask: record buffer = 262144/327680
12/10/17 21:05:54 INFO mapred.MapTask: Starting flush of map output
12/10/17 21:05:54 INFO mapred.MapTask: Finished spill 0
12/10/17 21:05:54 INFO mapred.TaskRunner: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
12/10/17 21:05:54 INFO mapred.LocalJobRunner: hdfs://localhost:9100/user/tanglg1987/input/ChainMapper.txt:0+35
12/10/17 21:05:54 INFO mapred.TaskRunner: Task 'attempt_local_0001_m_000000_0' done.
12/10/17 21:05:54 INFO mapred.LocalJobRunner:
12/10/17 21:05:54 INFO mapred.Merger: Merging 1 sorted segments
12/10/17 21:05:54 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 16 bytes
12/10/17 21:05:54 INFO mapred.LocalJobRunner:
12/10/17 21:05:54 INFO mapred.TaskRunner: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
12/10/17 21:05:54 INFO mapred.LocalJobRunner:
12/10/17 21:05:54 INFO mapred.TaskRunner: Task attempt_local_0001_r_000000_0 is allowed to commit now
12/10/17 21:05:54 INFO mapred.FileOutputCommitter: Saved output of task 'attempt_local_0001_r_000000_0' to hdfs://localhost:9100/user/tanglg1987/output
12/10/17 21:05:54 INFO mapred.LocalJobRunner: reduce > reduce
12/10/17 21:05:54 INFO mapred.TaskRunner: Task 'attempt_local_0001_r_000000_0' done.
12/10/17 21:05:55 INFO mapred.JobClient: map 100% reduce 100%
12/10/17 21:05:55 INFO mapred.JobClient: Job complete: job_local_0001
12/10/17 21:05:55 INFO mapred.JobClient: Counters: 15
12/10/17 21:05:55 INFO mapred.JobClient: FileSystemCounters
12/10/17 21:05:55 INFO mapred.JobClient: FILE_BYTES_READ=36152
12/10/17 21:05:55 INFO mapred.JobClient: HDFS_BYTES_READ=70
12/10/17 21:05:55 INFO mapred.JobClient: FILE_BYTES_WRITTEN=73202
12/10/17 21:05:55 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=12
12/10/17 21:05:55 INFO mapred.JobClient: Map-Reduce Framework
12/10/17 21:05:55 INFO mapred.JobClient: Reduce input groups=1
12/10/17 21:05:55 INFO mapred.JobClient: Combine output records=0
12/10/17 21:05:55 INFO mapred.JobClient: Map input records=3
12/10/17 21:05:55 INFO mapred.JobClient: Reduce shuffle bytes=0
12/10/17 21:05:55 INFO mapred.JobClient: Reduce output records=1
12/10/17 21:05:55 INFO mapred.JobClient: Spilled Records=2
12/10/17 21:05:55 INFO mapred.JobClient: Map output bytes=12
12/10/17 21:05:55 INFO mapred.JobClient: Map input bytes=35
12/10/17 21:05:55 INFO mapred.JobClient: Combine input records=0
12/10/17 21:05:55 INFO mapred.JobClient: Map output records=1
12/10/17 21:05:55 INFO mapred.JobClient: Reduce input records=1
第七步:查看结果集,运行结果如下: