题目链接
题意:n个球队,已经有一些胜负场,现在还有一些场次,你去分配胜负,问每支球队有没有可能获胜
思路:网络流公平分配模型,把场次当作任务,分配给人,然后先贪心,枚举每个人,让这些人能赢的都赢,剩下的去建图,每个源点连向比赛容量为场次,每个比赛连向2个球队,容量无限大,每个球队连向汇点,容量为每个的人的总和减去当前已经赢的,建完图跑一下最大流,然后判断源点流出的是否都满流即可
代码:
#include <cstdio> #include <cstring> #include <queue> #include <algorithm> using namespace std; const int MAXNODE = 1005; const int MAXEDGE = 100005; typedef int Type; const Type INF = 0x3f3f3f3f; struct Edge { int u, v; Type cap, flow; Edge() {} Edge(int u, int v, Type cap, Type flow) { this->u = u; this->v = v; this->cap = cap; this->flow = flow; } }; struct Dinic { int n, m, s, t; Edge edges[MAXEDGE]; int first[MAXNODE]; int next[MAXEDGE]; bool vis[MAXNODE]; Type d[MAXNODE]; int cur[MAXNODE]; vector<int> cut; void init(int n) { this->n = n; memset(first, -1, sizeof(first)); m = 0; } void add_Edge(int u, int v, Type cap) { edges[m] = Edge(u, v, cap, 0); next[m] = first[u]; first[u] = m++; edges[m] = Edge(v, u, 0, 0); next[m] = first[v]; first[v] = m++; } bool bfs() { memset(vis, false, sizeof(vis)); queue<int> Q; Q.push(s); d[s] = 0; vis[s] = true; while (!Q.empty()) { int u = Q.front(); Q.pop(); for (int i = first[u]; i != -1; i = next[i]) { Edge& e = edges[i]; if (!vis[e.v] && e.cap > e.flow) { vis[e.v] = true; d[e.v] = d[u] + 1; Q.push(e.v); } } } return vis[t]; } Type dfs(int u, Type a) { if (u == t || a == 0) return a; Type flow = 0, f; for (int &i = cur[u]; i != -1; i = next[i]) { Edge& e = edges[i]; if (d[u] + 1 == d[e.v] && (f = dfs(e.v, min(a, e.cap - e.flow))) > 0) { e.flow += f; edges[i^1].flow -= f; flow += f; a -= f; if (a == 0) break; } } return flow; } Type Maxflow(int s, int t) { this->s = s; this->t = t; Type flow = 0; while (bfs()) { for (int i = 0; i < n; i++) cur[i] = first[i]; flow += dfs(s, INF); } return flow; } void MinCut() { cut.clear(); for (int i = 0; i < m; i += 2) { if (vis[edges[i].u] && !vis[edges[i].v]) cut.push_back(i); } } } gao; const int N = 35; int t, n, win[N], g[N][N], ans[N], an, x[N * N], y[N * N]; bool judge(int u) { int sum = win[u]; for (int i = 1; i <= n; i++) sum += g[u][i]; gao.init(0); int tot = 0; for (int i = 1; i <= n; i++) { for (int j = i + 1; j <= n; j++) { if (i == u || j == u || g[i][j] == 0) continue; gao.add_Edge(0, ++tot, g[i][j]); x[tot] = i; y[tot] = j; } } for (int i = 1; i <= tot; i++) { gao.add_Edge(i, x[i] + tot, INF); gao.add_Edge(i, y[i] + tot, INF); } int t = tot + n + 1; gao.n = t + 1; for (int i = 1; i <= n; i++) { if (sum - win[i] < 0) return false; gao.add_Edge(i + tot, t, sum - win[i]); } gao.Maxflow(0, t); for (int i = gao.first[0]; i + 1; i = gao.next[i]) if (gao.edges[i].flow != gao.edges[i].cap) return false; return true; } int main() { scanf("%d", &t); while (t--) { an = 0; scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%d%*d", &win[i]); for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) scanf("%d", &g[i][j]); for (int i = 1; i <= n; i++) if (judge(i)) ans[an++] = i; for (int i = 0; i < an; i++) printf("%d%c", ans[i], i == an - 1 ? '\n' : ' '); } return 0; }