Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.
For example,
Given nums = [1,3,-1,-3,5,3,6,7], and k = 3.
Window position Max
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
Therefore, return the max sliding window as [3,3,5,5,6,7].
Note:
You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.
Follow up:
Could you solve it in linear time?
#include "stdafx.h" #include<vector> #include<set> #include<map> #include <functional> #include<iostream> using namespace std; class Solution { public: vector<int> maxSlidingWindow(vector<int>& nums, int k) { vector<int>re; if(nums.empty()) return re; if(k==1) return nums; set<int,std::greater<int>>aa; map<int,int>count; for(int i=0;i<k;i++) { count[nums[i]]++; aa.insert(nums[i]); } re.push_back(*aa.begin()); for(int i=1;i<=nums.size()-k;i++) { count[nums[i-1]]--; if(count[nums[i-1]]==0) aa.erase(aa.find(nums[i-1])); count[nums[i+k-1]]++; aa.insert(nums[i+k-1]); re.push_back(*aa.begin()); } return re; } }; int _tmain(int argc, _TCHAR* argv[]) { Solution sl; int aa[6]={1,3,1,2,0,5}; vector<int>nums(aa,aa+6); vector<int>re=sl.maxSlidingWindow(nums,3); system("pause"); return 0; }