大数求解:等差数列第n项值 等比数列第n项值,结果mod100007
#include<iostream> #include<cstdio> #include<string.h> using namespace std; long long d,q,a1,a2,a3,a4,ans; long long exp_mod(long long a,long long n,long long b) //快速幂取模: { long long t; if(n==0) return 1%b; if(n==1) return a%b; t=exp_mod(a,n/2,b); t=t*t%b; if((n&1)==1) t=t*a%b; return t; } int main() { while(scanf("%lld%lld%lld%lld",&a1,&a2,&a3,&a4)!=EOF) { if(a1+a3==a2*2)//等差数列 { d=a2-a1; // printf("%d\n",d); ans=((a1%100007)+((a4-1)%100007)*(d%100007))%100007; printf("%lld\n",ans); continue; } else { //快速幂取模就是在O(logn)内求出a^n mod b的值。算法的原理是ab mod c=(a mod c)(b mod c)mod c //An=A1×q^(n-1) printf("%lld\n",(a1%100007*exp_mod(a2,a4-1,100007))%100007); } } return 0; }