Harry and Magical Computer
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 73 Accepted Submission(s): 34
Problem Description
In reward of being yearly outstanding magic student, Harry gets a magical computer. When the computer begins to deal with a process, it will work until the ending of the processes. One day the computer got n processes to deal with. We number the processes from 1 to n. However there are some dependencies between some processes. When there exists a dependencies (a, b), it means process b must be finished before process a. By knowing all the m dependencies, Harry wants to know if the computer can finish all the n processes.
Input
There are several test cases, you should process to the end of file.
For each test case, there are two numbers n m on the first line, indicates the number processes and the number of dependencies. 1≤n≤100,1≤m≤10000
The next following m lines, each line contains two numbers a b, indicates a dependencies (a, b). 1≤a,b≤n
Output
Output one line for each test case.
If the computer can finish all the process print "YES" (Without quotes).
Else print "NO" (Without quotes).
Sample Input
3 2
3 1
2 1
3 3
3 2
2 1
1 3
Sample Output
YES
NO
Source
BestCoder Round #25
题目大意: 哈利用一个魔法电脑处理N个任务,但是有M个前后关系(a,b),
意思是在b执行之前必须先执行a,即a任务在b任务前,问你是否能满足要求
处理完这N个任务。
思路:拓扑排序,用到了队列。先将所有入度为0的点入队,并用Count统计
入度不为0的点。遍历队列中的点所连的所有边,并减少该点连接边另一端的
入度,只要另一端入度为0了,就将它加入队列中,并统计这一端的个数id。
最后比较id和Count是否相等就可以判断是否能处理完这N个任务。
#include<iostream>
#include<algorithm>
#include<queue>
#include<cstdio>
#include<cstring>
using namespace std;
const int MAXN = 110;
const int MAXM = 10010;
int head[MAXN],indegree[MAXM],N,M,T;
struct EdgeNode
{
int to;
int w;
int next;
};
EdgeNode Edges[MAXM];
int toposort()
{
queue<int> Q;
int u;
int Count = 0;
for(int i = 1; i <= N; i++)
{
if(indegree[i] == 0)
Q.push(i);
else
Count++;
}
int id = 0;
while(!Q.empty())
{
u = Q.front();
Q.pop();
for(int i = head[u]; i != -1; i = Edges[i].next)
{
indegree[Edges[i].to]--;
if(indegree[Edges[i].to]==0)
{
id++;
Q.push(Edges[i].to);
}
}
}
if(id < Count)
return false;
else
return true;
}
int main()
{
int x,y;
while(cin >> N >> M)
{
memset(head,-1,sizeof(head));
memset(indegree,0,sizeof(indegree));
for(int i = 0; i < M; i++)
{
cin >> x >> y;
Edges[i].to = y;
Edges[i].w = 1;
Edges[i].next = head[x];
head[x] = i;
indegree[y]++;
}
if(toposort())
cout << "YES" << endl;
else
cout << "NO" << endl;
}
return 0;
}