Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence 9 1 0 5 4 , Ultra-QuickSort produces the output 0 1 4 5 9 . Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.Sample Input
5 9 1 0 5 4 3 1 2 3 0题目大意:优化的冒泡排序,从小到大排序,就是找到一次没有交换时BREAK,问我们至少交换多少次冒泡排序可完成。Sample Output
6 0
思路:因为每次交换的都是左边的数大于右边的数,所以,我们需要求出有多少逆数对即可。可以利用归并排序求解。
LANGUAGE:C
CODE:
#include<iostream> #include<cstdlib> #include<cstdio> using namespace std; int a[500005],c[500005]; long long cnt; void mergesort(int left,int right) { int mid,i,j,tmp; if(right>left+1) { mid=(left+right)/2; mergesort(left,mid); mergesort(mid,right); tmp=left; for(i=left,j=mid;i<mid&&j<right;) { if(a[i]>a[j]) { c[tmp++]=a[j++]; cnt+=mid-i; } else c[tmp++]=a[i++]; } if(j<right)for(;j<right;++j)c[tmp++]=a[j]; else for(;i<mid;++i)c[tmp++]=a[i]; for(i=left;i<right;++i) a[i]=c[i]; } } int main() { //freopen("in.txt","r",stdin); int n; while(cin>>n,n) { cnt=0; for(int i=1;i<=n;i++) cin>>a[i]; mergesort(1,n+1); cout<<cnt<<endl; } return 0; }
复习时AC代码:
LANGUAGE:C++
CODE:
#include<iostream> using namespace std; long long cnt; void merge(int array[],int left,int mid,int right) { int* temp=new int[right-left+1]; int i,j,p; for(i=left,j=mid+1,p=0;i<=mid&&j<=right;p++) { if(array[i]<=array[j])temp[p]=array[i++]; else temp[p]=array[j++],cnt+=(mid-i+1); } while(i<=mid)temp[p++]=array[i++]; while(j<=right)temp[p++]=array[j++]; for(i=left,p=0;i<=right;i++)array[i]=temp[p++]; delete temp; } void mergesort(int array[],int left,int right) { if(left==right)array[left]=array[right]; else { int mid=(left+right)/2; mergesort(array,left,mid); mergesort(array,mid+1,right); merge(array,left,mid,right); } } int main() { int n,array[500005]; while(cin>>n,n) { cnt=0; for(int i=0;i<n;i++) cin>>array[i]; mergesort(array,0,n-1); cout<<cnt<<endl; } return 0; }