题目大意:一个n∗m的矩阵,求说有选任意三点,可以组成多少个三角形。
解题思路:任意选三点C(3(n+1)∗(m+1))但是有些组合是不可行得,即为三点共线,除了水平和竖直上的组合,就是斜线上的了,dp[i][j]即为ij情况下的斜线三点共线。
#include <cstdio>
#include <cstring>
typedef long long ll;
const int N = 1005;
ll dp[N][N];
ll gcd (ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
void init () {
for (int i = 2; i < N; i++)
for (int j = 2; j < N; j++)
dp[i][j] = dp[i-1][j] + dp[i][j-1] - dp[i-1][j-1] + gcd(i, j) - 1;
for (int i = 2; i < N; i++)
for (int j = 2; j < N; j++)
dp[i][j] += dp[i-1][j] + dp[i][j-1] - dp[i-1][j-1];
}
ll C(ll n, ll m) {
if (n < m)
return 0;
ll ans = 1;
for (ll i = 0; i < m; i++)
ans = ans * (n-i) / (i+1);
return ans;
}
ll solve (ll n, ll m) {
return C((n)*(m), 3) - C(n, 3) * m - C(m, 3) * n;
}
int main () {
int cas = 1;
ll n, m;
init();
while (scanf("%lld%lld", &n, &m) == 2 && n && m) {
printf("Case %d: %lld\n", cas++, solve(n+1, m+1)-dp[n][m]*2);
}
return 0;
}