dp[i] 表示公约数为i时有多少种组合
先预处理一遍dp[i]这是的dp[i]表示含有公约数i或者i的倍数的组合有多少个
再倒着dp dp[i] - = Sigma(dp[j]) (j是i的倍数 2i,3i,4i.....)
结果既为 Sigma[ dp[i]*pow(i,k) ]
Edward has a set of n integers {a1, a2,...,an}. He randomly picks a nonempty subset {x1, x2,…,xm} (each nonempty subset has equal probability to be picked), and would like to know the expectation of [gcd(x1, x2,…,xm)]k.
Note that gcd(x1, x2,…,xm) is the greatest common divisor of {x1, x2,…,xm}.
There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:
The first line contains two integers n, k (1 ≤ n, k ≤ 106). The second line contains n integers a1, a2,…,an (1 ≤ ai ≤ 106).
The sum of values max{ai} for all the test cases does not exceed 2000000.
For each case, if the expectation is E, output a single integer denotes E · (2n - 1) modulo 998244353.
1 5 1 1 2 3 4 5
42Author: LIN, Xi
/* *********************************************** Author :CKboss Created Time :2015年04月13日 星期一 09时29分19秒 File Name :I.cpp ************************************************ */ #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <string> #include <cmath> #include <cstdlib> #include <vector> #include <queue> #include <set> #include <map> using namespace std; typedef long long int LL; const LL mod=998244353LL; const int maxn=2001000; LL power(LL x,int n) { LL e=1LL; while(n) { if(n&1) e=(e*x)%mod; x=(x*x)%mod; n/=2; } return e%mod; } int n,k,mx; int vis[maxn]; LL two[maxn],dp[maxn]; int main() { //freopen("in.txt","r",stdin); //freopen("out.txt","w",stdout); two[0]=1LL; for(int i=1;i<maxn;i++) { two[i]=(two[i-1]*2LL)%mod; } int T_T; scanf("%d",&T_T); while(T_T--) { scanf("%d%d",&n,&k); memset(vis,0,sizeof(vis)); memset(dp,0,sizeof(dp)); mx=0; for(int i=0;i<n;i++) { int x; scanf("%d",&x); mx=max(mx,x); vis[x]++; } dp[1]=(two[n]-1+mod)%mod; for(int i=2;i<=mx;i++) { int temp=0; for(int j=i;j<=mx;j+=i) if(vis[j]) temp+=vis[j]; dp[i]=(two[temp]-1+mod)%mod; } for(int i=mx;i>=1;i--) { for(int j=i+i;j<=mx;j+=i) dp[i]=(dp[i]-dp[j]+mod)%mod; } LL sum=0; for(int i=1;i<=mx;i++) sum=(sum+(dp[i]*power(i,k))%mod)%mod; cout<<sum<<endl; } return 0; }