DZY loves colors, and he enjoys painting.
On a colorful day, DZY gets a colorful ribbon, which consists of n units (they are numbered from 1 to n from left to right). The color of the i-th unit of the ribbon is i at first. It is colorful enough, but we still consider that the colorfulness of each unit is 0 at first.
DZY loves painting, we know. He takes up a paintbrush with color x and uses it to draw a line on the ribbon. In such a case some contiguous units are painted. Imagine that the color of unit i currently is y. When it is painted by this paintbrush, the color of the unit becomes x, and the colorfulness of the unit increases by |x - y|.
DZY wants to perform m operations, each operation can be one of the following:
Can you help DZY?
The first line contains two space-separated integers n, m (1 ≤ n, m ≤ 105).
Each of the next m lines begins with a integer type (1 ≤ type ≤ 2), which represents the type of this operation.
If type = 1, there will be 3 more integers l, r, x (1 ≤ l ≤ r ≤ n; 1 ≤ x ≤ 108) in this line, describing an operation 1.
If type = 2, there will be 2 more integers l, r (1 ≤ l ≤ r ≤ n) in this line, describing an operation 2.
For each operation 2, print a line containing the answer — sum of colorfulness.
3 3 1 1 2 4 1 2 3 5 2 1 3
8
3 4 1 1 3 4 2 1 1 2 2 2 2 3 3
3 2 1
10 6 1 1 5 3 1 2 7 9 1 10 10 11 1 3 8 12 1 1 10 3 2 1 10
129
In the first sample, the color of each unit is initially [1, 2, 3], and the colorfulness is [0, 0, 0].
After the first operation, colors become [4, 4, 3], colorfulness become [3, 2, 0].
After the second operation, colors become [4, 5, 5], colorfulness become [3, 3, 2].
So the answer to the only operation of type 2 is 8.
题目大意:
1 l r x操作 讲 [l,r]上的节点涂成x颜色,并且每个节点的值都加上 |y-x| y为涂之前的颜色
2 l r 操作,求出[l,r]上的和。
思路分析:
当一个区间为相同的颜色。才可以直接涂色,累加sum。
所以我们update时,当区间颜色一致才更新,否则继续访问子节点,也不会损失多少时间
#include<cstdio> #include<iostream> #include<cstring> #include<algorithm> #include<queue> #include<cmath> using namespace std; #define root 1,n,1 #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 typedef long long ll; const int N = 1e5+100; ll sum[N<<2],col[N<<2],add[N<<2]; void build(int l,int r,int rt) { if(l==r) { col[rt]=l; return ; } int m=(l+r)>>1; build(lson); build(rson); } void pushdown(int rt,int len) { if(col[rt]) { sum[rt<<1]+=add[rt]*(len-(len>>1)); sum[rt<<1|1]+=add[rt]*(len>>1); add[rt<<1]+=add[rt]; add[rt<<1|1]+=add[rt]; add[rt]=0; col[rt<<1]=col[rt<<1|1]=col[rt]; } } void pushup(int rt) { if(col[rt<<1]==col[rt<<1|1]) col[rt]=col[rt<<1]; else col[rt]=0; sum[rt]=sum[rt<<1]+sum[rt<<1|1]; } void update(int L,int R,int c,int l,int r,int rt) { if(L<=l&&r<=R) { if(col[rt]) { add[rt]+=abs(c-col[rt]); sum[rt]+=abs(c-col[rt])*(r-l+1); col[rt]=c; return ; } } pushdown(rt,r-l+1); int m=(l+r)>>1; if(L<=m)update(L,R,c,lson); if(R>m) update(L,R,c,rson); pushup(rt); } ll query(int L,int R,int l,int r,int rt) { ll ans=0; if(L<=l&&r<=R) { return sum[rt]; } pushdown(rt,r-l+1); int m=(l+r)>>1; if(L<=m) ans+=query(L,R,lson); if(R>m) ans+=query(L,R,rson); return ans; } int main() { int n,m; cin>>n>>m; build(root); for(int i=1;i<=m;i++) { int op; scanf("%d",&op); if(op==1) { int l,r,x; scanf("%d%d%d",&l,&r,&x); update(l,r,x,root); } else { int l,r; scanf("%d%d",&l,&r); cout<<query(l,r,root)<<endl; } } }