8 9
1 3
1 4
4 5
5 6
6 8
7 8
3 7
3 2
3 4
7
从起点走到终点,再走回起点,中间不能走回头路,每个点最多走一次,问最多可以走过多少个点。相当于从起点找两条路到终点,拆点后建图,求最小费用最大流即可。如果最后求得的最大流不是2,则说明无解。
#include<cstdio> #include<map> #include<queue> #include<cstring> #include<iostream> #include<cstring> #include<algorithm> #include<vector> #include<stack> using namespace std; const int maxn = 200 + 5; const int INF = 1000000000; typedef long long LL; typedef pair<LL, int> P; struct Edge { int from, to, cap, flow, cost; }; struct MCMF { int n, m, s, t; vector<Edge> edges; vector<int> G[maxn]; int inq[maxn]; // 是否在队列中 int d[maxn]; // Bellman-Ford,单位流量的费用 int p[maxn]; // 上一条弧 int a[maxn]; // 可改进量 void init(int n) { this->n = n; for(int i = 0; i < n; i++) G[i].clear(); edges.clear(); } void AddEdge(int from, int to, int cap, int cost) { edges.push_back((Edge){from, to, cap, 0, cost}); edges.push_back((Edge){to, from, 0, 0, -cost}); m = edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } bool BellmanFord(int s, int t, int &flow,int &cost) { for(int i = 0; i < n; i++) d[i] = INF; memset(inq, 0, sizeof(inq)); d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF; queue<int> Q; Q.push(s); while(!Q.empty()) { int u = Q.front(); Q.pop(); inq[u] = 0; for(int i = 0; i < G[u].size(); i++) { Edge& e = edges[G[u][i]]; if(e.cap > e.flow && d[e.to] > d[u] + e.cost) { d[e.to] = d[u] + e.cost; p[e.to] = G[u][i]; a[e.to] = min(a[u], e.cap - e.flow); if(!inq[e.to]) { Q.push(e.to); inq[e.to] = 1; } } } } if(d[t] == INF) return false;//s-t不连通,失败退出 flow += a[t]; cost += d[t] * a[t]; int u = t; while(u != s) { edges[p[u]].flow += a[t]; edges[p[u]^1].flow -= a[t]; u = edges[p[u]].from; } return true; } // 需要保证初始网络中没有负权圈 int Mincost(int s, int t, int& flow) { int cost = 0; while(BellmanFord(s, t,flow, cost)); return cost; } }; MCMF g; int main(){ int n, m; while(scanf("%d%d", &n, &m) != EOF){ g.init(2*n); int source = 0, sink = 2*n-1; while(m--){ int x, y; scanf("%d%d", &x, &y); x--;y--; g.AddEdge(min(x,y)+n, max(x, y), 2, 0); } g.AddEdge(0, n, 2, -1); g.AddEdge(n-1, 2*n-1, 2, -1); for(int i = 1;i < n-1;i++){ g.AddEdge(i, i+n, 1, -1); } int flow = 0; int ans = -g.Mincost(source, sink, flow); if(flow != 2) ans = 1; else ans -= 2; cout << ans << endl; } return 0; }