poj 3134 Power Calculus(迭代加深dfs)

J - Power Calculus
Time Limit:5000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u
Submit  Status

Description

Starting with x and repeatedly multiplying by x, we can compute x31 with thirty multiplications:

x2 = x × xx3 = x2 × xx4 = x3 × x, …, x31 = x30 × x.

The operation of squaring can be appreciably shorten the sequence of multiplications. The following is a way to compute x31 with eight multiplications:

x2 = x × xx3 = x2 × xx6 = x3 × x3x7 = x6 × xx14 = x7 × x7x15 = x14 × xx30 = x15 × x15x31 = x30 × x.

This is not the shortest sequence of multiplications to compute x31. There are many ways with only seven multiplications. The following is one of them:

x2 = x × x, x4 = x2 × x2x8 = x4 × x4x8 = x4 × x4x10 = x8 × x2x20 = x10 × x10x30 = x20 × x10x31 = x30 × x.

If division is also available, we can find a even shorter sequence of operations. It is possible to compute x31 with six operations (five multiplications and one division):

x2 = x × xx4 = x2 × x2x8 = x4 × x4x16 = x8 × x8x32 = x16 × x16x31 = x32 ÷ x.

This is one of the most efficient ways to compute x31 if a division is as fast as a multiplication.

Your mission is to write a program to find the least number of operations to compute xn by multiplication and division starting with x for the given positive integer n. Products and quotients appearing in the sequence should be x to a positive integer’s power. In others words, x−3, for example, should never appear.

Input

The input is a sequence of one or more lines each containing a single integer nn is positive and less than or equal to 1000. The end of the input is indicated by a zero.

Output

Your program should print the least total number of multiplications and divisions required to compute xn starting with x for the integer n. The numbers should be written each in a separate line without any superfluous characters such as leading or trailing spaces.

Sample Input

1
31
70
91
473
512
811
953
0

Sample Output

0
6
8
9
11
9
13
12
题意:从1到n的最小转化步数
思路:迭代加深,深度即步数
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
const int MAXN=50+5;
int da[]={1,2,4,8,16,32,64,128,256,512,1024};
int p[MAXN],cnt,D,n;
int MAX(const int a,const int b){	return a>b?a:b;}

bool dfs(int d,int sum)
{
	if(d==D)
	{
		if(sum==n)return 1;
		return 0;
	}
	int i,j;
	for(i=cnt-1;i>=0;i--)
	{
		int max=0;
		for(j=0;j<cnt;j++)
			max=MAX(max,p[j]);
		if((max+sum)<<(D-d-1)<n)return 0;//剪枝,减去一定达不到n的搜索

		p[cnt++]=sum+p[i];//加法情况
		if(dfs(d+1,sum+p[i]))return 1;
		cnt--;

		if(sum-p[i]>0)
		{
			p[cnt++]=sum-p[i];//减法情况
			if(dfs(d+1,sum-p[i]))return 1;
			cnt--;
		}
	}
	return 0;
}
int solve(int x)
{
	int i;
	for(i=0;i<=10;i++)
		if(da[i]>=x){D=i;break;}
	while(1)
	{
		memset(p,0,sizeof(p));
		p[0]=1;cnt=1;
		if(dfs(0,1))break;
		D++;
	}
	return D;
}
int main()
{
	while(~scanf("%d",&n),n)
	{
		printf("%d\n",solve(n));
	}
	return 0;
}

你可能感兴趣的:(poj 3134 Power Calculus(迭代加深dfs))