- 【iOS】MVC设计模式
Magnetic_h
iosmvc设计模式objective-c学习ui
MVC前言如何设计一个程序的结构,这是一门专门的学问,叫做"架构模式"(architecturalpattern),属于编程的方法论。MVC模式就是架构模式的一种。它是Apple官方推荐的App开发架构,也是一般开发者最先遇到、最经典的架构。MVC各层controller层Controller/ViewController/VC(控制器)负责协调Model和View,处理大部分逻辑它将数据从Mod
- Armv8.3 体系结构扩展--原文版
代码改变世界ctw
ARM-TEE-Androidarmv8嵌入式arm架构安全架构芯片TrustzoneSecureboot
快速链接:.ARMv8/ARMv9架构入门到精通-[目录]付费专栏-付费课程【购买须知】:个人博客笔记导读目录(全部)TheArmv8.3architectureextensionTheArmv8.3architectureextensionisanextensiontoArmv8.2.Itaddsmandatoryandoptionalarchitecturalfeatures.Somefeat
- 深度学习-点击率预估-研究论文2024-09-14速读
sp_fyf_2024
深度学习人工智能
深度学习-点击率预估-研究论文2024-09-14速读1.DeepTargetSessionInterestNetworkforClick-ThroughRatePredictionHZhong,JMa,XDuan,SGu,JYao-2024InternationalJointConferenceonNeuralNetworks,2024深度目标会话兴趣网络用于点击率预测摘要:这篇文章提出了一种新
- 2005年高考英语北京卷 - 阅读理解C
让文字更美
Howcouldwepossiblythinkthatkeepinganimalsincagesinunnaturalenvironments-mostlyforentertainmentpurposes-isfairandrespectful?我们怎么可能认为把动物关在非自然环境的笼子里——主要是为了娱乐目的——是公平和尊重的呢?Zooofficialssaytheyareconcernedab
- 【NLP5-RNN模型、LSTM模型和GRU模型】
一蓑烟雨紫洛
nlprnnlstmgrunlp
RNN模型、LSTM模型和GRU模型1、什么是RNN模型RNN(RecurrentNeuralNetwork)中文称为循环神经网络,它一般以序列数据为输入,通过网络内部的结构设计有效捕捉序列之间的关系特征,一般也是以序列形式进行输出RNN的循环机制使模型隐层上一时间步产生的结果,能够作为当下时间步输入的一部分(当下时间步的输入除了正常的输入外还包括上一步的隐层输出)对当下时间步的输出产生影响2、R
- 【早安心语】
壹典心理咨询
【2021-6-9】早安春夏秋冬Nomatterhowdifficultitis,keepyourheadupstrong.Lifeisanawakening.Don’tbeyesterday,don’ttomorrow.Aslongastoday,liveinthepresentandlooktothefuture.Lifeisanattitude.Acalmmindisnaturallybro
- 探索深度学习的奥秘:从理论到实践的奇幻之旅
小周不想卷
深度学习
目录引言:穿越智能的迷雾一、深度学习的奇幻起源:从感知机到神经网络1.1感知机的启蒙1.2神经网络的诞生与演进1.3深度学习的崛起二、深度学习的核心魔法:神经网络架构2.1前馈神经网络(FeedforwardNeuralNetwork,FNN)2.2卷积神经网络(CNN)2.3循环神经网络(RNN)及其变体(LSTM,GRU)2.4生成对抗网络(GAN)三、深度学习的魔法秘籍:算法与训练3.1损失
- LeetCode_sql_day04(1280. 学生们参加各科测试的次数)
Darling_00
sqlleetcodesql数据库
描述:1280.学生们参加各科测试的次数查询出每个学生参加每一门科目测试的次数,结果按student_id和subject_name排序。查询结构格式如下所示。数据准备:CreatetableIfNotExistsStudents(student_idint,student_namevarchar(20))CreatetableIfNotExistsSubjects(subject_namevar
- arXiv综述论文“Graph Neural Networks: A Review of Methods and Applications”
硅谷秋水
自动驾驶
arXiv于2019年7月10日上载的GNN综述论文“GraphNeuralNetworks:AReviewofMethodsandApplications“。摘要:许多学习任务需要处理图数据,该图数据包含元素之间的丰富关系信息。建模物理系统、学习分子指纹、预测蛋白质界面以及对疾病进行分类都需要一个模型从图输入学习。在其他如文本和图像之类非结构数据学习的领域中,对提取的结构推理,例如句子的依存关系
- TextCNN:文本卷积神经网络模型
一只天蝎
编程语言---Pythoncnn深度学习机器学习
目录什么是TextCNN定义TextCNN类初始化一个model实例输出model什么是TextCNNTextCNN(TextConvolutionalNeuralNetwork)是一种用于处理文本数据的卷积神经网(CNN)。通过在文本数据上应用卷积操作来提取局部特征,这些特征可以捕捉到文本中的局部模式,如n-gram(连续的n个单词或字符)。定义TextCNN类importtorch.nnasn
- Java面试题 -- SpringBoot面试题二(Spring Boot 是微服务中最好的 Java 框架)
Liberty-895
JavaWeb高级Java面试题
问题一path=”users”,collectionResourceRel=”users”如何与SpringDataRest一起使用?@RepositoryRestResource(collectionResourceRel="users",path="users")publicinterfaceUserRestRepositoryextendsPagingAndSortingRepository
- 23种设计模式详解
WineMonk
#设计模式设计模式
23种设计模式详解文章目录23种设计模式详解1设计模式概述1.1创建型模式(CreationalPatterns)2.2结构型模式(StructuralPatterns)3.3行为型模式(BehavioralPatterns)2设计模式详解2.1简单工厂模式(SimpleFactoryPattern)2.1.1定义2.1.2结构2.1.3示例代码2.1.4特点2.1.5适用场景2.1.6工厂方法模
- 深度神经网络详解:原理、架构与应用
阿达C
活动dnn计算机网络人工智能神经网络机器学习深度学习
深度神经网络(DeepNeuralNetwork,DNN)是机器学习领域中最为重要和广泛应用的技术之一。它模仿人脑神经元的结构,通过多层神经元的连接和训练,能够处理复杂的非线性问题。在图像识别、自然语言处理、语音识别等领域,深度神经网络展示了强大的性能。本文将深入解析深度神经网络的基本原理、常见架构及其实际应用。一、深度神经网络的基本原理1.1神经元和感知器神经元是深度神经网络的基本组成单元。一个
- 深度学习算法在图算法中的应用(图卷积网络GCN和图自编码器GAE)
大嘤三喵军团
深度学习算法网络
深度学习算法在图算法中的应用1.图卷积网络(GraphConvolutionalNetworks,GCN)图卷积网络(GCN)是一种将卷积神经网络(ConvolutionalNeuralNetworks,CNN)推广到图结构数据的方法。GCN被广泛用于节点分类、图分类、链接预测等任务。优势和好处灵活性:GCN可以处理不规则和不均匀的数据结构,比如社交网络、分子结构、交通网络等。高效性:GCN使用局
- IDEA 常用插件推荐,美观又实用!
攀小黑
intellij-ideajavaide
1、TONGYlLingma-YourAlCodingAssistant.Typeless,Codemore.通义灵码,是一款基于通义大模型的智能编码辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力,并针对阿里云SDK/API的使用场景调优,为开发者带来高效、流畅的编码体验。兼容VisualStudioCode、Visua
- 基于图的推荐算法(12):Handling Information Loss of Graph Neural Networks for Session-based Recommendation
阿瑟_TJRS
前言KDD2020,针对基于会话推荐任务提出的GNN方法对已有的GNN方法的缺陷进行分析并做出改进主要针对lossysessionencoding和ineffectivelong-rangedependencycapturing两个问题:基于GNN的方法存在损失部分序列信息的问题,主要是在session转换为图以及消息传播过程中的排列无关(permutation-invariant)的聚合过程中造
- 【自然语言处理】自然语言处理NLP概述及应用
@我们的天空
人工智能技术nlp人工智能深度学习python机器学习自然语言处理scikit-learn
自然语言处理(NaturalLanguageProcessing,简称NLP)是一门集计算机科学、人工智能以及语言学于一体的交叉学科,致力于让计算机能够理解、解析、生成和处理人类的自然语言。它是人工智能领域的一个关键分支,旨在缩小人与机器之间的交流障碍,使得机器能够更有效地识别并响应人类的自然语言指令或内容。自然语言处理NLP概述基本任务:文本分类:将文本划分为预定义的类别,如情感分析、主题分类等
- 关于深度森林的一点理解
Y.G Bingo
机器学习方法机器学习神经网络
2017年年初,南京大学周志华老师上传了一篇名为:DeepForest:TowardsAnAlternativetoDeepNeuralNetworks的论文,一石激起千层浪,各大媒体纷纷讨论着,这似乎意味着机器学习的天色要变,实则不然,周志华老师通过微博解释道,此篇论文不过是为机器学习打开了另一扇窗,是另一种思维,而不是真的去替代深度神经网络(DNN)。下面我就简单概括一下我对这篇论文的理解,如
- pytorch NLP自然语言处理入门一:文本表示
whyte王
pytorchNLP基础pytorch自然语言处理人工智能
开始编辑:2024/2/16;最后编辑2024/2/16教程出自:https://learn.microsoft.com/en-sg/training/modules/intro-natural-language-processing-pytorch/第二部分:https://blog.csdn.net/qq_33345365/article/details/136142152本博客旨在探讨处理自
- 扩散模型理论与公式推导——详细过程速览与理解加深
留尘铃
声音信号处理学习图像处理人工智能扩散模型学习深度学习理论推导
参考:[1]HoJ,JainA,AbbeelP.Denoisingdiffusionprobabilisticmodels[J].Advancesinneuralinformationprocessingsystems,2020,33:6840-6851.[2]扩散模型/DiffusionModel原理讲解_哔哩哔哩_bilibili[3]扩散模型公式推导_扩散模型数学推导-CSDN博客[4]扩散
- 8.12(LVS负载均衡)
WPFwpf_
lvs负载均衡运维
一、LVS(一)什么是LVSlinuxvirturalserver的简称,也就是linxu虚拟机服务器,这是一个由章文岩博士发起的开源项目,官网是http://www.linuxvirtualserver.org,现在lvs已经是linux内核标准的-部分,使用lvS可以达到的技术目标是:通过linux达到负载均衡技术和linux操作系统实现一个高性能高可用的linux服务器集群,他具有良好的可性
- 2023ICPC亚洲区域赛(合肥)VP补题题解(48th)
farawaytravelerchy
ACM-ICPC训练补题算法ICPCc++python
2023ICPC亚洲区域赛(合肥)VP补题题解记录文章目录2023ICPC亚洲区域赛(合肥)VP补题题解记录写在前面已更新EFGJB,待更新ICFandE(签到题和简单题)G.StreakManipulation题目大意题目分析ac代码参考J.TakeoutDelivering题目大意题目分析ac代码参考B.QueueSorting题目大意题目分析ac代码参考写在前面已更新EFGJB,待更新IC比
- AI领域常用缩写词
大道不孤,众行致远
技术杂谈人工智能
学习AI的最大收获是英文水平长了长,多认识了几个单词:人工智能(ArtificialIntelligence,AI)通用人工智能(ArtificialGeneralIntelligence,AGI)生成式AI(AIgeneratedcontent,AIGC)智能体(Agent)人工神经网络(ArtificialNeuralNetworks,ANN)卷积神经网络(ConvolutionalNeura
- 自然语言处理(NLP)
(ง •_•)ง up
自然语言处理自然语言处理人工智能
自然语言处理(NLP)文章目录自然语言处理(NLP)一、什么是自然语言处理(NLP)?二、自然语言处理的发展历史三、自然语言处理的实际应用四、自然语言处理的相关方法五、自然语言处理中的模型六、自然语言处理的挑战一、什么是自然语言处理(NLP)?百度解释:自然语言处理(NaturalLanguageProcessing,NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之
- Node.js Google Cloud Natural Language API 教程
江奎钰
Node.jsGoogleCloudNaturalLanguageAPI教程nodejs-languageThisrepositoryisdeprecated.Allofitscontentandhistoryhasbeenmovedtogoogleapis/google-cloud-node.项目地址:https://gitcode.com/gh_mirrors/no/nodejs-langua
- 07-02 Filtering(过滤 )&& 07-03 Sorting(排序 )
汤姆•猫
XPO.netlinq数据库XPO
07-02Filtering(过滤)XPOallowsyouto:XPO允许您:filterdataitemsinadatastorepriortoretrievingdata,在检索数据之前过滤数据存储中的数据项,filterthealreadyretrievedpersistentobjectsontheclientside.在客户端过滤已检索到的持久对象。FilterDataontheSer
- 人脸识别算法MTCNN论文解读
纸上得来终觉浅~
图像处理paper阅读人脸识别mtcnn
论文名称:JointFaceDetectionandAlignmentusingMulti-taskCascadedConvolutionalNetworks论文地址:https://www.lao-wang.com/wp-content/uploads/2017/07/1604.02878.pdf1、MTCNN原理MTCNN,Multi-taskconvolutionalneuralnetwor
- MYSQL -NATURAL JOIN ,单行函数
_Rookie._
MYSQLsql数据库
NATURALJOIN是一种SQL连接类型,它会自动基于两个表中具有相同名称的列进行连接。使用NATURALJOIN时,不需要显式指定连接条件。它会帮你自动查询两张连接表中所有相同的字段,然后进行等值连接两表都有manager_id和department_idselectlast_name,department_name,employee_idfromemployeeseJOINdepartmen
- GNN会议&期刊汇总(人工智能、机器学习、深度学习、数据挖掘)
Bunny_Ben
科研方法&心得人工智能机器学习深度学习笔记神经网络数据挖掘
会议【NeurIPS】全称ConferenceonNeuralInformationProcessingSystems(神经信息处理系统大会),机器学习和计算神经科学领域的顶级学术会议,CCFA。【ICLR】全称InternationalConferenceonLearningRepresentations(国际学习表征会议),深度学习顶会。【AAAI】由人工智能促进协会AAAI(Associat
- 蓝易云 - MySQL中实施排序(sorting)及分组(grouping)操作的技巧。
蓝易云
mysql数据库ubuntu服务器运维java
在MySQL中实施排序与分组是数据查询中的常用操作,用以对结果集进行组织和概括。排序(Sorting)排序是通过ORDERBY子句进行。你可以根据一个或多个列对结果集进行排序,每一列都可以独立设定升序(ASC)或降序(DESC)。单列排序对于单列排序的情形,语句的基本形式如下:SELECTcolumn1,column2FROMtable_nameORDERBYcolumn1ASC;--或DESC多
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo