C++箴言:理解typename的两个含义

问题: 在下面的 template declarations(模板声明)中 class 和 typename 有什么不同?
template<class T> class Widget; // uses "class"
template<typename T> class Widget; // uses "typename"

   答案:没什么不同。在声明一个 template type parameter(模板类型参数)的时候,从 C++ 的观点看,class 和 typename 在声明一个 template parameter(模板参数)时意味着完全相同的东西。

  然而,C++ 并不总是把 class 和 typename 视为等同的东西。

   假设我们有一个函数的模板(代码如下),它不能编译,但是请将这 些事先放在一边——有一种方法能发现我的愚蠢:

template<typename C> // print 2nd element in
void print2nd(const C& container) // container;
{
 // this is not valid C++!
 if (container.size() >= 2) {
  C::const_iterator iter(container.begin()); // get iterator to 1st element
  ++iter; // move iter to 2nd element
  int value = *iter; // copy that element to an int
  std::cout << value; // print the int
 }
}

 分析: 两个变量
     C::const_iterator 是一个 nested dependent type name(嵌套依赖类型名),依赖于 template parameter C。
  local variable(局部变量)value 具有 int 类型。int 是一个不依赖于任何 template parameter(模板参数)的名字。这样的名字以 non-dependent names(非依赖名字)闻名。
  nested dependent name 会导致解析困难。例如,假设我们更加愚蠢地以这种方法开始 print2nd:

template<typename C>
void print2nd(const C& container)
{
 C::const_iterator * x;
 ...
}

   这看上去好像是我们将 x 声明为一个指向 C::const_iterator 的 local variable(局部变量)。但是它看上去如此仅仅是因为我们知道 C::const_iterator 是一个 type(类型)。但是如果 C::const_iterator 不是一个 type(类型)呢?如果 C 有一个 static data member(静态数据成员)碰巧就叫做 const_iterator 呢?再如果 x 碰巧是一个 global variable(全局变量)的名字呢?在这种情况下,上面的代码就不是声明一个 local variable(局部变量),而是成为 C::const_iterator 乘以 x!当然,这听起来有些愚蠢,但它是可能的,而编写 C++ 解析器的人必须考虑所有可能的输入,甚至是愚蠢的。

  直到 C 成为已知之前,没有任何办法知道 C::const_iterator 到底是不是一个 type(类型),而当 template(模板)print2nd 被解析的时候,C 还不是已知的。C++ 有一条规则解决这个歧义:如果解析器在一个 template(模板)中遇到一个 nested dependent name(嵌套依赖名字),它假定那个名字不是一个 type(类型),除非你用其它方式告诉它。缺省情况下,nested dependent name(嵌套依赖名字)不是 types(类型)。(对于这条规则有一个例外,下面介绍)

  记住这个,再看看 print2nd 的开头:

template<typename C>
void print2nd(const C& container)
{
 if (container.size() >= 2) {
  C::const_iterator iter(container.begin()); // this name is assumed to
  ... // not be a type

   这为什么不是合法的 C++ 现在应该很清楚了。iter 的 declaration(声明)仅仅在 C::const_iterator 是一个 type(类型)时才有意义,但是我们没有告诉 C++ 它是,而 C++ 就假定它不是。要想转变这个形势,我们必须告诉 C++ C::const_iterator 是一个 type(类型)。我们将 typename 放在紧挨着它的前面来做到这一点。

  通用的规则很简单:
       在你涉及到一个在 template(模板)中的 nested dependent type name(嵌套依赖类型名)的任何时候,你必须把单词 typename 放在紧挨着它的前面。

   typename 应该仅仅被用于标识 nested dependent type name(嵌套依赖类型名);其它名字不应该用它。例如,这是一个取得一个 container(容器)和这个 container(容器)中的一个 iterator(迭代器)的 function template(函数模板):

template<typename C> // typename allowed (as is "class")
void f(const C& container, // typename not allowed
typename C::iterator iter); // typename required

   "typename must precede nested dependent type names"(“typename 必须前置于嵌套依赖类型名”)规则的例外是 typename 不必前置于在一个 list of base classes(基类列表)中的或者在一个 member initialization list(成员初始化列表)中作为一个 base classes identifier(基类标识符)的 nested dependent type name(嵌套依赖类型名)。例如:

template<typename T>
class Derived: public Base<T>::Nested {
 // base class list: typename not
 public: // allowed
  explicit Derived(int x)
  : Base<T>::Nested(x) // base class identifier in mem
  {
   // init. list: typename not allowed
 
   typename Base<T>::Nested temp; // use of nested dependent type
   ... // name not in a base class list or
  } // as a base class identifier in a
  ... // mem. init. list: typename required
};

  这样的矛盾很令人讨厌,但是一旦你在经历中获得一点经验,你几乎不会在意它。

   让我们来看最后一个 typename 的例子,因为它在你看到的真实代码中具有代表性。假设我们在写一个取得一个 iterator(迭代器)的 function template(函数模板),而且我们要做一个 iterator(迭代器)指向的 object(对象)的局部拷贝 temp,我们可以这样做:

template<typename IterT>
void workWithIterator(IterT iter)
{
 typename std::iterator_traits<IterT>::value_type temp(*iter);
 ...
}

   那仅仅是一个 standard traits class(标准特性类)的使用,用 C++ 的说法就是 "the type of thing pointed to by objects of type IterT"(“被类型为 IterT 的对象所指向的东西的类型”)。因为 std::iterator_traits<IterT>::value_type 是一个 nested dependent type name(嵌套依赖类型名)(value_type 嵌套在 iterator_traits<IterT> 内部,而且 IterT 是一个 template parameter(模板参数)),我们必须让它被 typename 前置。
  为了方便,用typedef作如下定义:
template<typename IterT>
void workWithIterator(IterT iter)
{
 typedef typename std::iterator_traits<IterT>::value_type value_type;

 value_type temp(*iter);
 ...
}



  作为结束语,我应该 提及编译器与编译器之间对围绕 typename 的规则的执行情况的不同。一些编译器接受必需 typename 时它却缺失的代码;一些编译器接受不许 typename 时它却存在的代码;还有少数的(通常是老旧的)会拒绝 typename 出现在它必需出现的地方。这就意味着 typename 和 nested dependent type names(嵌套依赖类型名)的交互作用会导致一些轻微的可移植性问题。

  Things to Remember

  ·在声明 template parameters(模板参数)时,class 和 typename 是可互换的。

   ·用 typename 去标识 nested dependent type names(嵌套依赖类型名),在 base class lists(基类列表)中或在一个 member initialization list(成员初始化列表)中作为一个 base class identifier(基类标识符)时除外。

你可能感兴趣的:(C++箴言:理解typename的两个含义)