优先队列Priority_Queue

//  Priority_Queue.cpp : Defines the entry point for the console application.
//

#include 
" stdafx.h "
#include 
< assert.h >
#include 
< iostream >
#include 
< algorithm >

class  Max_Heapify {
private:
    
int m_size;
public:
    
int Parent(int i)return i/2; }
    
int Left(int i)  return 2*i; }
    
int Right(int i) {return 2*i+1;}
    
    
void Max_Adus_Heapify(int A[],int i)
    
{
        
int l = Left(i);
        
int r = Right(i);
        
int largest = i;
        
if((l <= m_size) && (A[l] > A[i]))//
            largest = l;
//从元素A[Left(i)],A[Right(i)],A[i]找出最大的元素。
        
        
if((r <= m_size) && (A[r] >A[largest]))
            largest 
= r;
//并将下标存放在largest中。如果A[i]最大,则以i为根的子树而使i及其子树满足堆的性质。        
        if (largest != i)
        
{
          std::swap(A[i], A[largest] );
//
         Max_Adus_Heapify(A, largest); //
        }

//下标为largest的节点在交换后的值是A[i],以该节点为根的子树又有可能违反最大堆的性质。因而要递归调用。        
    
    }

    
void Build_Max_Heapify(int A[])
    
{   
           
for(int i = m_size/2; i >= 0; i--)
           Max_Adus_Heapify(A, i);
    }

//建堆:子数组A[n/2+1...n]中的元素都是叶子节点,因此每个都可以看作只含一个元素的堆.
//m_size/2与m_size一样都正确,也就是上面句子的解释。


public:
    Max_Heapify():m_size(NULL)
{}
    Max_Heapify(
int A[],int size)
    

        m_size 
=  size-1;
        Build_Max_Heapify(A);
    }

   
    
void Heap_Sort(int A[])
    
{  
        Build_Max_Heapify(A);
        
for(int i = m_size; i >= 1; i--)
        
{
            std::swap(A[
0], A[i]);
            
--m_size;
            Max_Adus_Heapify(A, 
0);
        }

    }
      
 
//Build_Max_Heapify(),将使A[0]达到最大值。这样一直循环交换存放在数组A[i]中,递归调用。

    
~Max_Heapify(){}
}
;

class  Priority_Queue :  private   Max_Heapify {
private:
    
int heap_size;
public:
    Priority_Queue(
int A[], int _size):Max_Heapify(A, _size){ heap_size = _size-1; }
    
int  Heap_Maximum(int A[]){return A[0];}//返回具有最大关键字的元素
    int  Heap_Extract_Max(int A[])//去掉并返回最大关键字元素
    
        assert( heap_size 
>= 0);
        
int max = A[0];
        A[
0= A[heap_size];
        heap_size 
= heap_size - 1;
        Max_Adus_Heapify(A, 
0);

        
return max;
    }

    
void Heap_Increase_Key(int A[], int i, int key) //关键字增加的下标,是由对应的i来标识
    {
        assert(key 
> A[i]);
        A[i] 
= key;
        
while ((i >= 0&& (A[Parent(i)] < A[i]))
        
{   //在移动的过程中,次元素不断地与其父母相比,如果次元素的关键字较大,
            std::swap(A[i], A[Parent(i)]);//则交换它们的关键字且继续移动。当元素的关键字小于其父母时,
            i = Parent(i);//此时最大堆性质成立,因此程序终止。
        }


    
    }

    
void Max_Heap_Insert(int A[], int key)
    

        heap_size 
= heap_size + 1;
        A[heap_size] 
= -2147483648;
        Heap_Increase_Key(A, heap_size, key);
    
    }


    
~Priority_Queue(){}
}
;

int  main( int  argc,  char *  argv[])
{
    
    
int A[11= 3045227291226802243,1};
    
int size = sizeof(A)/sizeof(A[0]);
    Priority_Queue p(A, size);
    std::cout
<<p.Heap_Maximum(A)<<std::endl;
    std::cout
<<    p.Heap_Extract_Max(A)<<std::endl;
    std::cout
<<p.Heap_Maximum(A)<<std::endl;
    p.Heap_Increase_Key(A,
5,85);
    std::cout
<<p.Heap_Maximum(A)<<std::endl;
    p.Max_Heap_Insert(A, 
9999);
    std::cout
<<p.Heap_Maximum(A)<<std::endl;
//    std::copy(A, A+11, std::ostream_iterator<int>(std::cout, " "));
    return 0;
}

 

你可能感兴趣的:(优先队列Priority_Queue)