CF 177(div2) E(greedy )

E. Polo the Penguin and XOR operation
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Little penguin Polo likes permutations. But most of all he likes permutations of integers from 0 to n, inclusive.

For permutation p = p0, p1, ..., pn, Polo has defined its beauty — number .

Expression means applying the operation of bitwise excluding "OR" to numbers x and y. This operation exists in all modern programming languages, for example, in language C++ and Java it is represented as "^" and in Pascal — as "xor".

Help him find among all permutations of integers from 0 to n the permutation with the maximum beauty.

Input

The single line contains a positive integer n (1 ≤ n ≤ 106).

Output

In the first line print integer m the maximum possible beauty. In the second line print any permutation of integers from 0 to n with the beauty equal to m.

If there are several suitable permutations, you are allowed to print any of them.

Sample test(s)
Input
4
Output
 
因为亦或就是不进位的二进制加法,所以很容易想到尽量不要让每个位上的1浪费掉,就有了一个贪心的想法,从大到小,用全1的数去减当前的这个数,就是这个数应该对应的数,结合样例测试后的确是可行的。但是发现,对较小的数这样做,得到的对应数可能大于最大值,没法对每个数都用一个统一的方案解决,怎么办呢?其实可以发现,较小的数对应的数,在对称的那个较大数求较小数时应经就找到了,就是说我们不用一次次去找每个数对应的数,而是每次找一对数,这样问题就解决了。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <stack>
#define LL long long
using namespace std;
const int maxn = 1000000 + 5;

LL pre[32];
int ans[maxn];

LL len(int x){
    LL ret = 0;
    while(x){
        ret++;
        x = x/2;;
    }
    return ret;
}

int main(){
    int n;
    LL total;
    pre[0] = 0;
    pre[1] = 1;
    for(int i = 2;i < 32;i++) pre[i] = (pre[i-1]<<1) + 1;
    while(cin >> n){
        memset(ans,-1,sizeof(ans));
        total = 0;
        for(int i = n;i >= 0;i--){
            if(ans[i] == -1){
                int j = pre[len(i)]-i;
                ans[i] = j;
                ans[j] = i;
                total += 2*pre[len(i)];
            }
        }
        cout << total << endl;
        for(int i = 0;i <= n;i++) printf("%d ",ans[i]);
        cout << endl;
    }
    return 0;
}

你可能感兴趣的:(CF 177(div2) E(greedy ))