SGI STL源码之内存配置

好长时间没有写博客了,最近一直忙于看STL源码和实验室其它事情。在骑行了12公里的情况下,终于停歇下

来,静静地坐着,开始思考人生,思考STL是如何配置内存的。
1、SGI STL在配置内存的时候主要考虑了以下几点:
①向堆申请空间
②考虑了多线程
③考虑了内存碎片的问题
④考虑了当内存不足时的应变策略
在C++中申请堆内存使用的是new操作符,释放堆内存使用的是delete操作符,这两个操作符相当于C语言的
malloc()、free()函数。不知道是历史原因还是因为C++中没有realloc这种类似功能的函数(或操作符),SGI STL在申请和释放内存时使用的是C语言函数。
至于多线程,就需要考虑同步的问题,以防多个线程同时修改全局变量。在Linux系统下采用的是互斥锁
(pthread_mutex_lock()、pthread_mutex_unlock()),在windows系统下采用的是临界区。
内存碎片的问题,也是本博客主要讲解的内容。SGI STL在内存碎片处理的问题上采用了两级配置器,第一级配
置器主要是用来配置大于128K字节的内存、第二级配置器主要是用来配置小于128K字节(小块内存)的内存。我们首先来看看第一级配置器做了什么。以下程序是我从源码中提炼出来的关于第一级配置的精华(源码稍后会给出)。
template<int ints>
class __malloc_alloc_template
{
public:
	static void *allocate(int n)
	{
		void *tmp = malloc(n);
		if (tmp == 0)
			exit(1);
	}
	static void deallocate(void *p)
	{
		free(p);
	}
	static void *reallocate(void*p, int n)
	{
		void *tmp = realloc(p, n);
		if (tmp == 0)
			exit(1);
	}
};
我们从代码中可以发现,第一级配置器主要是转调用C语言的malloc、free及realloc函数而已,其中的模板参数并没有什么用处。
第二级配置器的做法是如果配置的内存大于128K字节,就移交给第一级配置器去处理。当区块小于128字节时,

则以内存池的方式来管理:每次配置一大块内存,并维护对于的自由链表。如果下次再有相应大小的内存需求,则直接向自由链表中索取,如果客端释放小额区块,则有配置器回收到自由链表中。设计的理念是防止频繁的对小块内存的申请和释放。为了方便管理内存,SGI采用8字节对齐的方式,比如我需要12字节的内存,SGI会给你配置16个字节的内存,即向上取到8的倍数。第二级配置器维护了16个自由链表,负责维护16种小型区块的配置,下标从0开始,依次维护的内存大小为8、16、24、32、40、48、56、64、72、80、88、96、104、112、120、128(单位为字节)。自由链表的结构为:

union obj

{

union obj*free_list;

char client_data[1];

}

你是否能意识到此联合体的妙用?从第一个字段观之,obj可被看做是一个指针,指向相同形式的另一个obj。从其第二个字段观之,obj可被视为指针,指向实际的区块,一物二用。

下面我们以图解的方式来说明


内存配置的具体过程:共分为三种情况:
①需求的内存大于128k,就调用第一级配置器,这种情况非常简单,就不做介绍。
②需求的内存小于128k,且自由链表中有可用的空间。根据需求的内存,计算出其应该去哪个自由链表中搜索。然后取出自由链表中第一个可用的空间,并修改自由链表的指针。比如,我们需求的内存为20个字节,向上取到8的倍数为24,因此我们应该去下标为2的自由链表中取内存。
SGI STL源码之内存配置_第1张图片
③需求的内存小于128K,且自由链表中没有可用的内存。这时我们需要从内存池中获取内存。我们期望从内存池中一次性获取20个块,来填充自由链表。究竟能得到多少个块,这取决于内存池的当前容量。我们可以分为以下3中情形:
<1>内存池容量足够大。在这种情形下直接从内存池取出20个小块的容量填充到自由链表中。
SGI STL源码之内存配置_第2张图片
<2>内存池有容量,但容量的大小只能提供1个及以上的块,不足于20个块的大小。此时,尽可能多地从内存池取内存来填充自由链表。
SGI STL源码之内存配置_第3张图片
<3>内存池的容量不足于1个小块的需求。此时我们要把内存池中剩余的那点内存填充到合适的自由链表中,然后使用malloc申请一块大的堆内存,堆内存的大小为2*20*需求的小块。


下面的代码是我从源代码中提取的关于二级配置器分配内存的精华
/*第二级配置器*/
template<bool thread,int inst>
class __default_alloc_template
{
private:
	enum{ ALINE = 8,MAXBYTES = 128, NUM_FREE_LIST = MAXBYTES/ALINE};
	static char *start;//内存池的起始地址
	static char *end;//内存池的结束地址
	static int heap_size;//堆上已有内存的大小
	union obj
	{
		union obj *free_list;
		char client[1];
	};
	static obj *free_list[NUM_FREE_LIST];
	static int round_up(int bytes)//上调至8的倍数
	{
		return ((bytes + ALINE - 1) & ~(ALINE - 1));
	}
	static int free_list_index(int bytes)//寻找自由链表的下标
	{
		return ((bytes + ALINE - 1) / ALINE - 1);
	}
public:
	static void *allocate(int size);
	static void *refill(int size);
	static char *chunk_alloc(int size, int &nobjs);
	static void *reallocate(void *p,int old_size,int new_size);

	static void deallocate(void *p,int size);
};

template<bool thread, int inst>
char *__default_alloc_template<thread, inst>::start = 0;

template<bool thread, int inst>
char *__default_alloc_template<thread, inst>::end = 0;

template<bool thread, int inst>
typename __default_alloc_template<thread, inst>::obj * __default_alloc_template<thread, inst>::free_list[NUM_FREE_LIST]
= { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

template<bool thread, int inst>
int __default_alloc_template<thread, inst>::heap_size = 0;

template<bool thread, int inst>
void *__default_alloc_template<thread, inst>::allocate(int size)
{
	if (size > MAXBYTES)
		return __malloc_alloc_template<0>::allocate(size);//使用第一级配置器

	obj **my_free_list;
	obj *result;
	my_free_list = free_list + free_list_index(size);

	result = *my_free_list;
	if (0 == result)//自由链表没有可用的内存,进行重新填充
	{
		void *tmp = refill(round_up(size));
		return tmp;
	}
	*my_free_list = result->free_list;
	return result;
}

template<bool thread, int inst>
void *__default_alloc_template<thread, inst>::refill(int size)
{
	int nobjs = 20;
	char *chunk = chunk_alloc(size, nobjs);//nobjs按引用传递

	if (1 == nobjs)//如果只够一个块的大小
		return chunk;
	/*如果有多个小块,则把这几个小块串成链表*/
	obj **my_free_list = free_list + free_list_index(size);
	obj *next;
	next = *my_free_list = (obj*)(chunk + size);

	for (int i = 1; i < nobjs - 1; i++)
	{
		next->free_list = (obj*)((char*)next + size);
		next = next->free_list;
	}
	next->free_list = 0;
	return chunk;
}

template<bool thread, int inst>
char *__default_alloc_template<thread, inst>::chunk_alloc(int size, int &nobjs)
{
	int need_size = size * nobjs;
	int left_size = end - start;
	char *result = start;
	/*内存池中的内存足够用*/
	if (left_size >= need_size)
	{
		start += need_size;
		return result;
	}
	/*内存池中空间不够,但足够一个以上的块使用*/
	else if (left_size >= size)
	{
		nobjs = left_size / size;
		start += nobjs * size;
		return result;
	}
	/*内存池剩余的空间满足不了一个小块的需求*/
	else
	{
		int bytes_to_get = 2 * need_size + round_up(heap_size >> 4);
		/*尝试利用内存池剩余的零头*/
		if (left_size > 0)
		{
			obj **my_free_list = free_list + free_list_index(left_size);
			obj *tmp = *my_free_list;
			*my_free_list = (obj *)start;
			(*my_free_list)->free_list = tmp;
		}
		/*配置堆用来补充内存池*/
		result = (char *)malloc(bytes_to_get);
		/*只做简单的处理:没有足够的内存则终止程序*/
		if (result == 0)
			exit(1);

		start = result + need_size;
		end = result + bytes_to_get;
		heap_size += bytes_to_get;
		return result;
	}
}
template<bool thread, int inst>
void *__default_alloc_template<thread, inst>::reallocate(void *p, int old_size, int new_size)
{
	/*如果新旧内存都大于MAXBYTES*/
	if (old_size > MAXBYTES && new_size > MAXBYTES)
		return realloc(p, new_size);
	/*如果新旧内存调整到8的倍数后相等*/
	if (round_up(old_size) == round_up(new_size))
		return p;
	void *result = allocate(new_size);
	int min_copy = old_size > new_size ? new_size : old_size;
	memcpy(result, p, min_copy);
	deallocate(p, old_size);
	return result;
}

template<bool thread, int inst>
void __default_alloc_template<thread, inst>::deallocate(void *p, int size)
{
	if (size > MAXBYTES)
		malloc_alloc::deallocate(p);
	/*回收到自由列表中*/
	else
	{
		obj**my_free_list = free_list + free_list_index(size);
		obj *tmp = *my_free_list;
		*my_free_list = (obj*)p;
		(*my_free_list)->free_list = tmp;
	}
}
二级配置器又是如何回收内存的呢?如果回收的内存大于128字节,那么直接交给第一级配置器进行free掉;如果回收的内存小于128字节,则直接回收到自由链表中。
SGI STL源码之内存配置_第4张图片
SGI STL的源码如下:
#ifndef __SGI_STL_INTERNAL_ALLOC_H
#define __SGI_STL_INTERNAL_ALLOC_H

#ifdef __SUNPRO_CC
#  define __PRIVATE public
#else
#  define __PRIVATE private
#endif

#ifdef __STL_STATIC_TEMPLATE_MEMBER_BUG
#  define __USE_MALLOC
#endif

/* 这实现了一些标准的节点配置.这些与在C++标准草案或在原STL分配器都不一样。
它们不封装不同的指针类型;事实上,我们假设只有一个指针类型。
配置元素的目的是分配对象,与原来的STL分配器相比没有更大的用途。
*/
/**********************19~28行主要是处理内存溢出***********************************/
#ifndef __THROW_BAD_ALLOC
#  if defined(__STL_NO_BAD_ALLOC) || !defined(__STL_USE_EXCEPTIONS)
#    include <stdio.h>
#    include <stdlib.h>
#    define __THROW_BAD_ALLOC fprintf(stderr, "out of memory\n"); exit(1)
#  else 
#    include <new>
#    define __THROW_BAD_ALLOC throw std::bad_alloc()
#  endif
#endif

#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#ifndef __RESTRICT
#  define __RESTRICT
#endif

#ifdef __STL_THREADS
# include <stl_threads.h>
# define __NODE_ALLOCATOR_THREADS true
# ifdef __STL_SGI_THREADS
  // We test whether threads are in use before locking.
  // Perhaps this should be moved into stl_threads.h, but that
  // probably makes it harder to avoid the procedure call when
  // it isn't needed.
    extern "C" {
      extern int __us_rsthread_malloc;
    }
	// The above is copied from malloc.h.  Including <malloc.h>
	// would be cleaner but fails with certain levels of standard
	// conformance.
#   define __NODE_ALLOCATOR_LOCK if (threads && __us_rsthread_malloc) \
                { _S_node_allocator_lock._M_acquire_lock(); }
#   define __NODE_ALLOCATOR_UNLOCK if (threads && __us_rsthread_malloc) \
                { _S_node_allocator_lock._M_release_lock(); }
# else /* !__STL_SGI_THREADS */
#   define __NODE_ALLOCATOR_LOCK \
        { if (threads) _S_node_allocator_lock._M_acquire_lock(); }
#   define __NODE_ALLOCATOR_UNLOCK \
        { if (threads) _S_node_allocator_lock._M_release_lock(); }
# endif
#else
//  Thread-unsafe
#   define __NODE_ALLOCATOR_LOCK
#   define __NODE_ALLOCATOR_UNLOCK
#   define __NODE_ALLOCATOR_THREADS false
#endif

__STL_BEGIN_NAMESPACE

#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#endif

// Malloc-based allocator.  Typically slower than default alloc below.
// Typically thread-safe and more storage efficient.
#ifdef __STL_STATIC_TEMPLATE_MEMBER_BUG
# ifdef __DECLARE_GLOBALS_HERE
    void (* __malloc_alloc_oom_handler)() = 0;
    // g++ 2.7.2 does not handle static template data members.
# else
    extern void (* __malloc_alloc_oom_handler)();
# endif
#endif

template <int __inst>
class __malloc_alloc_template 
{
private:

  static void* _S_oom_malloc(size_t);
  static void* _S_oom_realloc(void*, size_t);

#ifndef __STL_STATIC_TEMPLATE_MEMBER_BUG
  static void (* __malloc_alloc_oom_handler)();
#endif

public:

  static void* allocate(size_t __n)
  {
    void* __result = malloc(__n);
    if (0 == __result) __result = _S_oom_malloc(__n);
    return __result;
  }

  static void deallocate(void* __p, size_t /* __n */)
  {
    free(__p);
  }

  static void* reallocate(void* __p, size_t /* old_sz */, size_t __new_sz)
  {
    void* __result = realloc(__p, __new_sz);
    if (0 == __result) __result = _S_oom_realloc(__p, __new_sz);
    return __result;
  }

  static void (* __set_malloc_handler(void (*__f)()))()
  {
    void (* __old)() = __malloc_alloc_oom_handler;
    __malloc_alloc_oom_handler = __f;
    return(__old);
  }

};

// 内存溢出处理函数
#ifndef __STL_STATIC_TEMPLATE_MEMBER_BUG
template <int __inst>
void (* __malloc_alloc_template<__inst>::__malloc_alloc_oom_handler)() = 0;
#endif

template <int __inst>
void*
__malloc_alloc_template<__inst>::_S_oom_malloc(size_t __n)
{
    void (* __my_malloc_handler)();
    void* __result;

    for (;;) {
        __my_malloc_handler = __malloc_alloc_oom_handler;
        if (0 == __my_malloc_handler) { __THROW_BAD_ALLOC; }
        (*__my_malloc_handler)();
        __result = malloc(__n);
        if (__result) return(__result);
    }
}

template <int __inst>
void* __malloc_alloc_template<__inst>::_S_oom_realloc(void* __p, size_t __n)
{
    void (* __my_malloc_handler)();
    void* __result;

    for (;;) {
        __my_malloc_handler = __malloc_alloc_oom_handler;
        if (0 == __my_malloc_handler) { __THROW_BAD_ALLOC; }
        (*__my_malloc_handler)();
        __result = realloc(__p, __n);
        if (__result) return(__result);
    }
}

typedef __malloc_alloc_template<0> malloc_alloc;
/*定义此类的目的是使配置器的接口能够符合STL规格,内部函数
只是转调用而已,或者调用第一级的配置器或调用第二级的配置器*/
template<class _Tp, class _Alloc>
class simple_alloc
{
public:
    static _Tp* allocate(size_t __n)
      { return 0 == __n ? 0 : (_Tp*) _Alloc::allocate(__n * sizeof (_Tp)); }
    static _Tp* allocate(void)
      { return (_Tp*) _Alloc::allocate(sizeof (_Tp)); }
    static void deallocate(_Tp* __p, size_t __n)
      { if (0 != __n) _Alloc::deallocate(__p, __n * sizeof (_Tp)); }
    static void deallocate(_Tp* __p)
      { _Alloc::deallocate(__p, sizeof (_Tp)); }
};

// Allocator adaptor to check size arguments for debugging.
// Reports errors using assert.  Checking can be disabled with
// NDEBUG, but it's far better to just use the underlying allocator
// instead when no checking is desired.
// There is some evidence that this can confuse Purify.
template <class _Alloc>
class debug_alloc {

private:

  enum {_S_extra = 8};  // Size of space used to store size.  Note
                        // that this must be large enough to preserve
                        // alignment.

public:

  static void* allocate(size_t __n)
  {
    char* __result = (char*)_Alloc::allocate(__n + (int) _S_extra);
    *(size_t*)__result = __n;
    return __result + (int) _S_extra;
  }

  static void deallocate(void* __p, size_t __n)
  {
    char* __real_p = (char*)__p - (int) _S_extra;
    assert(*(size_t*)__real_p == __n);
    _Alloc::deallocate(__real_p, __n + (int) _S_extra);
  }

  static void* reallocate(void* __p, size_t __old_sz, size_t __new_sz)
  {
    char* __real_p = (char*)__p - (int) _S_extra;
    assert(*(size_t*)__real_p == __old_sz);
    char* __result = (char*)
      _Alloc::reallocate(__real_p, __old_sz + (int) _S_extra,
                                   __new_sz + (int) _S_extra);
    *(size_t*)__result = __new_sz;
    return __result + (int) _S_extra;
  }

};


# ifdef __USE_MALLOC

typedef malloc_alloc alloc;
typedef malloc_alloc single_client_alloc;

# else

#if defined(__SUNPRO_CC) || defined(__GNUC__)
// breaks if we make these template class members:
  enum {_ALIGN = 8};
  enum {_MAX_BYTES = 128};
  enum {_NFREELISTS = 16}; // _MAX_BYTES/_ALIGN
#endif
 /*第二级配置器*/
template <bool threads, int inst>
class __default_alloc_template 
{
private:
#if ! (defined(__SUNPRO_CC) || defined(__GNUC__))
    enum {_ALIGN = 8};//对齐字节数
    enum {_MAX_BYTES = 128};//块的最大字节数
    enum {_NFREELISTS = 16}; // 16个自由链表
# endif
 static size_t _S_round_up(size_t __bytes) //将__bytes提升到8的倍数
{
	 return (((__bytes) + (size_t) _ALIGN-1) & ~((size_t) _ALIGN - 1));
}

__PRIVATE:
 union _Obj //自由链表的节点结构
{
	union _Obj* _M_free_list_link;
	char _M_client_data[1];
};
private:
# if defined(__SUNPRO_CC) || defined(__GNUC__) || defined(__HP_aCC)
    static _Obj* __STL_VOLATILE _S_free_list[]; 
# else
    static _Obj* __STL_VOLATILE _S_free_list[_NFREELISTS]; 
# endif
 static  size_t _S_freelist_index(size_t __bytes)//__bytes所在自由链表的下标
{
	return (((__bytes) + (size_t)_ALIGN-1)/(size_t)_ALIGN - 1);
}

static void* _S_refill(size_t __n);//重新填充自由链表
static char* _S_chunk_alloc(size_t __size, int& __nobjs);//分配大块内存
// 大块内存的状态
static char* _S_start_free;//内存池的起始位置
static char* _S_end_free;//内存池的结束位置
static size_t _S_heap_size;//堆的大小

# ifdef __STL_THREADS
static _STL_mutex_lock _S_node_allocator_lock;//如果定义了线程,则声明一个互斥锁
# endif

class _Lock;
friend class _Lock;
class _Lock //主要是用来线程之间的同步
{
public:
_Lock() { __NODE_ALLOCATOR_LOCK; }
~_Lock() { __NODE_ALLOCATOR_UNLOCK; }
};
public:
	static void* allocate(size_t __n)//分配内存
	{
		void* __ret = 0;

		if (__n > (size_t) _MAX_BYTES)//如果需求内存大于128,则调用第一级配置器
		{
			__ret = malloc_alloc::allocate(__n);
		}
		else 
		{
			_Obj* __STL_VOLATILE* __my_free_list = _S_free_list + _S_freelist_index(__n);

			#ifndef _NOTHREADS
			_Lock __lock_instance;
			#endif

			_Obj* __RESTRICT __result = *__my_free_list;
			if (__result == 0)
				__ret = _S_refill(_S_round_up(__n));//自由链表中没有内存则去内存池中寻找内存来填充自由链表
			else 
			{
				*__my_free_list = __result -> _M_free_list_link;
				__ret = __result;
			}
		}
		return __ret;
	};

	static void deallocate(void* __p, size_t __n)//回收内存
	{
		if (__n > (size_t) _MAX_BYTES)//如果回收内存大于128,则直接交给第一级配置器free掉
			malloc_alloc::deallocate(__p, __n);
		else 
		{
			_Obj* __STL_VOLATILE*  __my_free_list = _S_free_list + _S_freelist_index(__n);
			_Obj* __q = (_Obj*)__p;

			#ifndef _NOTHREADS
			_Lock __lock_instance;
			#endif /* _NOTHREADS */
			__q -> _M_free_list_link = *__my_free_list;
			*__my_free_list = __q;
		}
	}

	static void* reallocate(void* __p, size_t __old_sz, size_t __new_sz);
} ;

typedef __default_alloc_template<__NODE_ALLOCATOR_THREADS, 0> alloc;
typedef __default_alloc_template<false, 0> single_client_alloc;

template <bool __threads, int __inst>
inline bool operator==(const __default_alloc_template<__threads, __inst>&,const __default_alloc_template<__threads, __inst>&)
{
  return true;
}

# ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <bool __threads, int __inst>
inline bool operator!=(const __default_alloc_template<__threads, __inst>&,const __default_alloc_template<__threads, __inst>&)
{
  return false;
}
# endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */

template <bool __threads, int __inst>
char*__default_alloc_template<__threads, __inst>::_S_chunk_alloc(size_t __size, int& __nobjs)
{
    char* __result;
    size_t __total_bytes = __size * __nobjs;
    size_t __bytes_left = _S_end_free - _S_start_free;

    if (__bytes_left >= __total_bytes)
	{
        __result = _S_start_free;
        _S_start_free += __total_bytes;
        return(__result);
	} 
	else if (__bytes_left >= __size)
	{
        __nobjs = (int)(__bytes_left/__size);
        __total_bytes = __size * __nobjs;
        __result = _S_start_free;
        _S_start_free += __total_bytes;
        return(__result);
    } 
	else
	{
        size_t __bytes_to_get = 2 * __total_bytes + _S_round_up(_S_heap_size >> 4);
        if (__bytes_left > 0)
		{
            _Obj* __STL_VOLATILE* __my_free_list =_S_free_list + _S_freelist_index(__bytes_left);

            ((_Obj*)_S_start_free) -> _M_free_list_link = *__my_free_list;
            *__my_free_list = (_Obj*)_S_start_free;
        }
        _S_start_free = (char*)malloc(__bytes_to_get);
        if (0 == _S_start_free)
		{
            size_t __i;
            _Obj* __STL_VOLATILE* __my_free_list;
			_Obj* __p;
            for (__i = __size;__i <= (size_t) _MAX_BYTES;__i += (size_t) _ALIGN)
			{
                __my_free_list = _S_free_list + _S_freelist_index(__i);
                __p = *__my_free_list;
                if (0 != __p)
				{
                    *__my_free_list = __p -> _M_free_list_link;
                    _S_start_free = (char*)__p;
                    _S_end_free = _S_start_free + __i;
                    return(_S_chunk_alloc(__size, __nobjs));
                }
			}
			_S_end_free = 0;	// In case of exception.
            _S_start_free = (char*)malloc_alloc::allocate(__bytes_to_get);
        }
        _S_heap_size += __bytes_to_get;
        _S_end_free = _S_start_free + __bytes_to_get;
        return(_S_chunk_alloc(__size, __nobjs));
    }
}

template <bool __threads, int __inst>
void*__default_alloc_template<__threads, __inst>::_S_refill(size_t __n)
{
    int __nobjs = 20;
    char* __chunk = _S_chunk_alloc(__n, __nobjs);
    _Obj* __STL_VOLATILE* __my_free_list;
    _Obj* __result;
    _Obj* __current_obj;
    _Obj* __next_obj;
    int __i;

    if (1 == __nobjs) return(__chunk);
	__my_free_list = _S_free_list + _S_freelist_index(__n);

	__result = (_Obj*)__chunk;
	*__my_free_list = __next_obj = (_Obj*)(__chunk + __n);
	for (__i = 1; ; __i++)
	{
        __current_obj = __next_obj;
		__next_obj = (_Obj*)((char*)__next_obj + __n);
        if (__nobjs - 1 == __i)
		{
            __current_obj -> _M_free_list_link = 0;
            break;
        } 
		else
		{
            __current_obj -> _M_free_list_link = __next_obj;
        }
	}
    return(__result);
}

template <bool threads, int inst>
void*__default_alloc_template<threads, inst>::reallocate(void* __p,size_t __old_sz,size_t __new_sz)
{
    void* __result;
    size_t __copy_sz;

    if (__old_sz > (size_t) _MAX_BYTES && __new_sz > (size_t) _MAX_BYTES)
	{
        return(realloc(__p, __new_sz));
    }
    if (_S_round_up(__old_sz) == _S_round_up(__new_sz))
		return(__p);
    __result = allocate(__new_sz);
    __copy_sz = __new_sz > __old_sz? __old_sz : __new_sz;
    memcpy(__result, __p, __copy_sz);
    deallocate(__p, __old_sz);
    return(__result);
}

#ifdef __STL_THREADS
    template <bool __threads, int __inst>
    _STL_mutex_lock
    __default_alloc_template<__threads, __inst>::_S_node_allocator_lock
        __STL_MUTEX_INITIALIZER;
#endif


template <bool __threads, int __inst>
char* __default_alloc_template<__threads, __inst>::_S_start_free = 0;

template <bool __threads, int __inst>
char* __default_alloc_template<__threads, __inst>::_S_end_free = 0;

template <bool __threads, int __inst>
size_t __default_alloc_template<__threads, __inst>::_S_heap_size = 0;

template <bool __threads, int __inst>
typename __default_alloc_template<__threads, __inst>::_Obj* __STL_VOLATILE
__default_alloc_template<__threads, __inst> ::_S_free_list[
# if defined(__SUNPRO_CC) || defined(__GNUC__) || defined(__HP_aCC)
    _NFREELISTS
# else
    __default_alloc_template<__threads, __inst>::_NFREELISTS
# endif
] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, };
#endif /* ! __USE_MALLOC */

#ifdef __STL_USE_STD_ALLOCATORS

template <class _Tp>
class allocator
{
	typedef alloc _Alloc;          // 根本的配置器
public:
	typedef size_t     size_type;
	typedef ptrdiff_t  difference_type;
	typedef _Tp*       pointer;
	typedef const _Tp* const_pointer;
	typedef _Tp&       reference;
	typedef const _Tp& const_reference;
	typedef _Tp        value_type;

	template <class _Tp1> 
	struct rebind
	{
		typedef allocator<_Tp1> other;
	};

	allocator() __STL_NOTHROW {}
	allocator(const allocator&) __STL_NOTHROW {}
	template <class _Tp1>
	allocator(const allocator<_Tp1>&) __STL_NOTHROW {}
	~allocator() __STL_NOTHROW {}

	pointer address(reference __x) const { return &__x; }
	const_pointer address(const_reference __x) const { return &__x; }

	_Tp* allocate(size_type __n, const void* = 0)
	{
		return __n != 0 ? static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp))) : 0;
	}

  void deallocate(pointer __p, size_type __n)
    { _Alloc::deallocate(__p, __n * sizeof(_Tp)); }

  size_type max_size() const __STL_NOTHROW 
    { return size_t(-1) / sizeof(_Tp); }

  void construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
  void destroy(pointer __p) { __p->~_Tp(); }
};

template<>
class allocator<void> {
public:
  typedef size_t      size_type;
  typedef ptrdiff_t   difference_type;
  typedef void*       pointer;
  typedef const void* const_pointer;
  typedef void        value_type;

  template <class _Tp1> struct rebind {
    typedef allocator<_Tp1> other;
  };
};


template <class _T1, class _T2>
inline bool operator==(const allocator<_T1>&, const allocator<_T2>&) 
{
  return true;
}

template <class _T1, class _T2>
inline bool operator!=(const allocator<_T1>&, const allocator<_T2>&)
{
  return false;
}

// Allocator adaptor to turn an SGI-style allocator (e.g. alloc, malloc_alloc)
// into a standard-conforming allocator.   Note that this adaptor does
// *not* assume that all objects of the underlying alloc class are
// identical, nor does it assume that all of the underlying alloc's
// member functions are static member functions.  Note, also, that 
// __allocator<_Tp, alloc> is essentially the same thing as allocator<_Tp>.

template <class _Tp, class _Alloc>
struct __allocator {
  _Alloc __underlying_alloc;

  typedef size_t    size_type;
  typedef ptrdiff_t difference_type;
  typedef _Tp*       pointer;
  typedef const _Tp* const_pointer;
  typedef _Tp&       reference;
  typedef const _Tp& const_reference;
  typedef _Tp        value_type;

  template <class _Tp1> struct rebind {
    typedef __allocator<_Tp1, _Alloc> other;
  };

  __allocator() __STL_NOTHROW {}
  __allocator(const __allocator& __a) __STL_NOTHROW
    : __underlying_alloc(__a.__underlying_alloc) {}
  template <class _Tp1> 
  __allocator(const __allocator<_Tp1, _Alloc>& __a) __STL_NOTHROW
    : __underlying_alloc(__a.__underlying_alloc) {}
  ~__allocator() __STL_NOTHROW {}

  pointer address(reference __x) const { return &__x; }
  const_pointer address(const_reference __x) const { return &__x; }

  // __n is permitted to be 0.
  _Tp* allocate(size_type __n, const void* = 0) {
    return __n != 0 
        ? static_cast<_Tp*>(__underlying_alloc.allocate(__n * sizeof(_Tp))) 
        : 0;
  }

  // __p is not permitted to be a null pointer.
  void deallocate(pointer __p, size_type __n)
    { __underlying_alloc.deallocate(__p, __n * sizeof(_Tp)); }

  size_type max_size() const __STL_NOTHROW 
    { return size_t(-1) / sizeof(_Tp); }

  void construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
  void destroy(pointer __p) { __p->~_Tp(); }
};

template <class _Alloc>
class __allocator<void, _Alloc> {
  typedef size_t      size_type;
  typedef ptrdiff_t   difference_type;
  typedef void*       pointer;
  typedef const void* const_pointer;
  typedef void        value_type;

  template <class _Tp1> struct rebind {
    typedef __allocator<_Tp1, _Alloc> other;
  };
};

template <class _Tp, class _Alloc>
inline bool operator==(const __allocator<_Tp, _Alloc>& __a1,
                       const __allocator<_Tp, _Alloc>& __a2)
{
  return __a1.__underlying_alloc == __a2.__underlying_alloc;
}

#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class _Tp, class _Alloc>
inline bool operator!=(const __allocator<_Tp, _Alloc>& __a1,
                       const __allocator<_Tp, _Alloc>& __a2)
{
  return __a1.__underlying_alloc != __a2.__underlying_alloc;
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */

// Comparison operators for all of the predifined SGI-style allocators.
// This ensures that __allocator<malloc_alloc> (for example) will
// work correctly.

template <int inst>
inline bool operator==(const __malloc_alloc_template<inst>&,
                       const __malloc_alloc_template<inst>&)
{
  return true;
}

#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <int __inst>
inline bool operator!=(const __malloc_alloc_template<__inst>&,
                       const __malloc_alloc_template<__inst>&)
{
  return false;
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */


template <class _Alloc>
inline bool operator==(const debug_alloc<_Alloc>&,
                       const debug_alloc<_Alloc>&) {
  return true;
}

#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class _Alloc>
inline bool operator!=(const debug_alloc<_Alloc>&,
                       const debug_alloc<_Alloc>&) {
  return false;
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */

template <class _Tp, class _Allocator>
struct _Alloc_traits
{
  static const bool _S_instanceless = false;
  typedef typename _Allocator::__STL_TEMPLATE rebind<_Tp>::other 
          allocator_type;
};

template <class _Tp, class _Allocator>
const bool _Alloc_traits<_Tp, _Allocator>::_S_instanceless;

// The version for the default allocator.

template <class _Tp, class _Tp1>
struct _Alloc_traits<_Tp, allocator<_Tp1> >
{
  static const bool _S_instanceless = true;
  typedef simple_alloc<_Tp, alloc> _Alloc_type;
  typedef allocator<_Tp> allocator_type;
};

// Versions for the predefined SGI-style allocators.

template <class _Tp, int __inst>
struct _Alloc_traits<_Tp, __malloc_alloc_template<__inst> >
{
  static const bool _S_instanceless = true;
  typedef simple_alloc<_Tp, __malloc_alloc_template<__inst> > _Alloc_type;
  typedef __allocator<_Tp, __malloc_alloc_template<__inst> > allocator_type;
};

template <class _Tp, bool __threads, int __inst>
struct _Alloc_traits<_Tp, __default_alloc_template<__threads, __inst> >
{
  static const bool _S_instanceless = true;
  typedef simple_alloc<_Tp, __default_alloc_template<__threads, __inst> > 
          _Alloc_type;
  typedef __allocator<_Tp, __default_alloc_template<__threads, __inst> > 
          allocator_type;
};

template <class _Tp, class _Alloc>
struct _Alloc_traits<_Tp, debug_alloc<_Alloc> >
{
  static const bool _S_instanceless = true;
  typedef simple_alloc<_Tp, debug_alloc<_Alloc> > _Alloc_type;
  typedef __allocator<_Tp, debug_alloc<_Alloc> > allocator_type;
};

// Versions for the __allocator adaptor used with the predefined
// SGI-style allocators.

template <class _Tp, class _Tp1, int __inst>
struct _Alloc_traits<_Tp, 
                     __allocator<_Tp1, __malloc_alloc_template<__inst> > >
{
  static const bool _S_instanceless = true;
  typedef simple_alloc<_Tp, __malloc_alloc_template<__inst> > _Alloc_type;
  typedef __allocator<_Tp, __malloc_alloc_template<__inst> > allocator_type;
};

template <class _Tp, class _Tp1, bool __thr, int __inst>
struct _Alloc_traits<_Tp, 
                      __allocator<_Tp1, 
                                  __default_alloc_template<__thr, __inst> > >
{
  static const bool _S_instanceless = true;
  typedef simple_alloc<_Tp, __default_alloc_template<__thr,__inst> > 
          _Alloc_type;
  typedef __allocator<_Tp, __default_alloc_template<__thr,__inst> > 
          allocator_type;
};

template <class _Tp, class _Tp1, class _Alloc>
struct _Alloc_traits<_Tp, __allocator<_Tp1, debug_alloc<_Alloc> > >
{
  static const bool _S_instanceless = true;
  typedef simple_alloc<_Tp, debug_alloc<_Alloc> > _Alloc_type;
  typedef __allocator<_Tp, debug_alloc<_Alloc> > allocator_type;
};


#endif /* __STL_USE_STD_ALLOCATORS */

#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#endif

__STL_END_NAMESPACE

#undef __PRIVATE

#endif /* __SGI_STL_INTERNAL_ALLOC_H */

// Local Variables:
// mode:C++
// End:



你可能感兴趣的:(C++,内存分配)