R语言因子分析(一)

因子分析

因子分析(factor analysis)模型是主成分分析的推广。它也是利用降维的思想,由研究原始变量相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。相对于主成分分析,因子分析更倾向于描述原始变量之间的相关关系;因此,因子分析的出发点是原始变量的相关矩阵。因子分析的思想始于1904年Charles Spearman对学生考试成绩的研究。近年来,随着电子计算机的高速发展,人们将因子分析的理论成功地应用于心理学、医学、气象、地质、经济学等各个领域,也使得因子分析的理论和方法更加丰富。本章主要介绍因子分析的基本理论及方法,运用因子分析方法分析实际问题的主要步骤及因子分析的上机实现等内容。

基本思想

因子分析的基本思想是根据相关性大小把原始变量分组,使得同组内的变量之间相关性较高,而不同组的变量间的相关性则较低。每组变量代表一个基本结构,并用一个不可观测的综合变量表示,这个基本结构就称为公共因子。对于所研究的某一具体问题,原始变量就可以分解成两部分之和的形式,一部分是少数几个不可测的所谓公共因子的线性函数,另一部分是与公共因子无关的特殊因子。在经济统计中,描述一种经济现象的指标可以有很多,比如要反映物价的变动情况,对各种商品的价格做全面调查固然可以达到目的,但这样做显然耗时耗力,为实际工作者所不取。实际上,某一类商品中很多商品的价格之间存在明显的相关性或相互依赖性,只要选择几种主要商品的价格或进而对这几种主要商品的价格进行综合,得到某一种假想的“综合商品”的价格,就足以反映某一类物价的变动情况,这里,“综合商品”的价格就是提取出来的因子。这样,对各类商品物价或仅对主要类别商品的物价进行类似分析然后加以综合,就可以反映出物价的整体变动情况。这一过程也就是从一些有错综复杂关系的经济现象中找出少数几个主要因子,每一个主要因子就代表经济变量间相互依赖的一种经济作用。抓住这些主要因子就可以帮助我们对复杂的经济问题进行分析和解释。
    因子分析还可用于对变量或样品的分类处理,我们在得出因子的表达式之后,就可以把原始变量的数据代入表达式得出因子得分值,根据因子得分在因子所构成的空间中把变量或样品点画出来,形象直观地达到分类的目的。

因子分析不仅仅可以用来研究变量之间的相关关系,还可以用来研究样品之间的相关关系,通常将前者称之为R 型因子分析,后者称之为Q 型因子分析。

<span style="white-space:pre">	</span>data.learn.fact=factanal(data.learn.normx,factors=6,fm="wls") #fm 提取公共因子的方法很多,包括最大似然法(ml)、主轴迭代法(pa)、加权最小二乘法(wls)、广义加权最小二乘法(gls)和最小残差法(minres)。
	fact.loadings=as.matrix(data.learn.fact$loadings) #原来的成分和因子之间的关系
	data.normx.fact=data.learn.normx%*%fact.loadings


你可能感兴趣的:(数据挖掘,机器学习,R语言,因子分析)