51nod 1040 1060 (数论)

51nod 1040 传送门:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1040

求1-n与n的gcd之和,n<=1e9

一个一个求肯定是不行的,所以需要一些方法咯

首先,如果x与n的gcd为gcd(x,n),所以gcd(x/gcd(x,n),n/gcd(x,n))=1,所以我们可以搜索n的因子nn,然后求nn的欧拉函数(与nngcd为1的数字个数为tmp),然后tmp*n/nn就是gcd为n/nn的数字的gcd之和。

先求出n的欧拉函数phi,然后对于一个素因子k,如果k只有一个,n/k的欧拉函数为phi/(k-1),否则n/k的欧拉函数为phi/k

通过搜索n的每一个因子,答案为sigma(phi[d]*n/d)(d|n)

#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <string>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <sstream>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#pragma comment(linker,"/STACK:102400000,102400000")

using namespace std;
#define   MAX           1000005
#define   MAXN          1000005
#define   maxnode       15
#define   sigma_size    30
#define   lson          l,m,rt<<1
#define   rson          m+1,r,rt<<1|1
#define   lrt           rt<<1
#define   rrt           rt<<1|1
#define   middle        int m=(r+l)>>1
#define   LL            long long
#define   ull           unsigned long long
#define   mem(x,v)      memset(x,v,sizeof(x))
#define   lowbit(x)     (x&-x)
#define   pii           pair<int,int>
#define   bits(a)       __builtin_popcount(a)
#define   mk            make_pair
#define   limit         10000

//const int    prime = 999983;
const int    INF   = 0x3f3f3f3f;
const LL     INFF  = 0x3f3f;
const double pi    = acos(-1.0);
const double inf   = 1e18;
const double eps   = 1e-8;
const LL    mod    = 1e9+7;
const ull    mx    = 133333331;

/*****************************************************/
inline void RI(int &x) {
      char c;
      while((c=getchar())<'0' || c>'9');
      x=c-'0';
      while((c=getchar())>='0' && c<='9') x=(x<<3)+(x<<1)+c-'0';
 }
/*****************************************************/

bool prime[100005];
int pr[100005];
int tot;
vector<int> v;
set<int> s;
LL ans;
int n;
void init(){
    mem(prime,0);tot=0;
    for(int i=2;i<100000;i++){
        if(!prime[i]){
            for(int j=2*i;j<100000;j+=i) prime[j]=1;
            pr[tot++]=i;
        }
    }
}

void dfs(int x,int ph,int j){
    if(s.count(x)) return ;
    else{
        s.insert(x);
        ans+=(LL)ph*(n/x);
    }
    for(int i=j;i<v.size();i++){
        int tmp=ph;
        int k=x;
        while(k%v[i]==0){
            k/=v[i];
            if(k%v[i]==0) tmp/=v[i];
            else tmp/=(v[i]-1);
            dfs(k,tmp,j+1);
        }
    }
}

int main(){
    //freopen("in.txt","r",stdin);
    cin>>n;
    init();
    v.clear();
    int k=n;
    for(int i=0;i<tot&&pr[i]*pr[i]<=k;i++){
        if(k%pr[i]==0){
            while(k%pr[i]==0) k/=pr[i];
            v.push_back(pr[i]);
        }
    }
    if(k!=1) v.push_back(k);
    int phi=n;
    for(int i=0;i<v.size();i++){
        phi=phi/v[i]*(v[i]-1);
    }
    ans=0;
    dfs(n,phi,0);
    cout<<ans<<endl;
    return 0;
}


51nod 1060 传送门:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1060

求1-n里面因子数量最多的,并且最小的数

n<=1e18

由于1e18分解质因数,也就最多60多个数相乘,所以可以直接爆搜解决问题

因为a=p1^k1 * p2^k2 * p3^k3 *...* pn^kn

它的因子数量为(k1+1)*(k2+1)*(k3+1)*...*(kn+1)

所以搜索时记录当前值的大小,和这会应该搜索的素因子pi,以及当前因子个数,每次搜索往下都是搜索后一种素因子,不在同一个素因子上递归

#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <string>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <sstream>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#pragma comment(linker,"/STACK:102400000,102400000")

using namespace std;
#define   MAX           1000005
#define   MAXN          1000005
#define   maxnode       15
#define   sigma_size    30
#define   lson          l,m,rt<<1
#define   rson          m+1,r,rt<<1|1
#define   lrt           rt<<1
#define   rrt           rt<<1|1
#define   middle        int m=(r+l)>>1
#define   LL            long long
#define   ull           unsigned long long
#define   mem(x,v)      memset(x,v,sizeof(x))
#define   lowbit(x)     (x&-x)
#define   pii           pair<int,int>
#define   bits(a)       __builtin_popcount(a)
#define   mk            make_pair
#define   limit         10000

//const int    prime = 999983;
const int    INF   = 0x3f3f3f3f;
const LL     INFF  = 0x3f3f;
const double pi    = acos(-1.0);
const double inf   = 1e18;
const double eps   = 1e-8;
const LL    mod    = 1e9+7;
const ull    mx    = 133333331;

/*****************************************************/
inline void RI(int &x) {
      char c;
      while((c=getchar())<'0' || c>'9');
      x=c-'0';
      while((c=getchar())>='0' && c<='9') x=(x<<3)+(x<<1)+c-'0';
 }
/*****************************************************/

LL n;
LL ans;
int maxn;
bool prime[10005];
int pr[10005];
int tot;
void init(){
    mem(prime,0);tot=0;
    for(int i=2;i<10000;i++){
        if(!prime[i]){
            for(int j=i*i;j<10000;j+=i) prime[j]=1;
            pr[tot++]=i;
        }
    }
}

void dfs(int f,int num,int nu,LL tmp){
    LL ret=tmp;
    if(tmp<=n){
        if(nu>maxn){
            maxn=nu;
            ans=tmp;
        }
        else if(nu==maxn) ans=min(ans,tmp);
    }
    for(int i=1;i<=num;i++){
        if(ret>n/pr[f]) break;//防止爆LL
        ret*=pr[f];
        dfs(f+1,i,nu*(i+1),ret);
    }
}
int main(){
    //freopen("in.txt","r",stdin);
    int t;
    cin>>t;
    init();
    while(t--){
        cin>>n;
        maxn=0;
        ans=0;
        dfs(0,100,1,1);
        cout<<ans<<" "<<maxn<<endl;
    }
    return 0;
}


你可能感兴趣的:(51nod 1040 1060 (数论))