【USACO3.1.3】丑数 恶心搜索题

TLE方法:

依次找出丑数,从最小的丑数开始用K个素数来扩增,如果这些扩曾出的数字P,没有被加入队列,那么就加入队列。 扩增完后,当前最小丑数出队。 从下一个丑数开始扩增……

我用了SPLAY,我把队列大小限制在50W以内……然后第N个出队的才是正确答案。 40W都不行…… 如果不限制队列大小,貌似计算太慢太慢…… 只能过11个测试点。


Compiling...
Compile: OK

Executing...
   Test 1: TEST OK [0.003 secs, 3504 KB]
   Test 2: TEST OK [0.003 secs, 3504 KB]
   Test 3: TEST OK [0.005 secs, 3504 KB]
   Test 4: TEST OK [0.032 secs, 3636 KB]
   Test 5: TEST OK [0.049 secs, 3768 KB]
   Test 6: TEST OK [0.211 secs, 4692 KB]
   Test 7: TEST OK [0.084 secs, 4032 KB]
   Test 8: TEST OK [0.062 secs, 3900 KB]
   Test 9: TEST OK [0.003 secs, 3504 KB]
   Test 10: TEST OK [0.003 secs, 3504 KB]
   Test 11: TEST OK [0.003 secs, 3504 KB]
  > Run 12: Execution error:

/*
TASK:humble
LANG:C++
*/

#include <cstdio>
 
int k, n;
int a[102];
void init()
{
	scanf("%d%d", &k, &n);
	for (int i = 0; i != k; ++ i)	scanf("%d", &a[i]);
}
 
struct node
{
	node *c[2];
	int key, size;
	node()
	{
		key = size = 0;
		c[0] = c[1] = this;	
	}
	node(int KEY_, node *c0, node *c1)
	{
		key = KEY_;	
		c[0] = c0;
		c[1] = c1;
	}
	node* rz(){return size = c[0] -> size + c[1] -> size + 1, this;}
}Tnull, *null = &Tnull;
 
const int maxint = 0x7fffffff;
struct splay
{
	node *root;
	splay()
	{
		root = (new node(*null)) -> rz();	
		root -> key = maxint;
	}
 
	void zig(bool d)
	{
		node *t = root -> c[d];	
		root -> c[d] = null -> c[d];
		null -> c[d] = root;
		root = t;
	}
 
	void zigzig(bool d)
	{
		node *t = root -> c[d] -> c[d];	
		root -> c[d] -> c[d] = null -> c[d];
		null -> c[d] = root -> c[d];
		root -> c[d] = null -> c[d] -> c[!d];
		null -> c[d] -> c[!d] = root -> rz();
		root = t;
	}
 
	void finish(bool d)
	{
		node *t = null -> c[d], *p = root -> c[!d];
		while (t != null)
		{
			t = null -> c[d] -> c[d];	
			null -> c[d] -> c[d] = p;		
			p = null -> c[d] -> rz();
			null -> c[d] = t;
		}
		root -> c[!d] = p;
	}
 
	void select(int k)//谁有k个儿子
	{
		int t;
		while (1)
		{
			bool d = k > (t = root -> c[0] -> size);	
			if (k == t || root -> c[d] == null)	break;
			if (d)	k -= t + 1;
			bool dd = k > (t = root -> c[d] -> c[0] -> size);
			if (k == t || root -> c[d] -> c[dd] == null)	{zig(d);break;}
			if (dd)	k -= t + 1;
			d != dd ? zig(d), zig(dd) : zigzig(d);
		}
		finish(0), finish(1);
		root -> rz();
	}
 
	void search(int x)
	{
		while (1)	
		{
			bool d = x > root -> key;
			if (root -> c[d] == null)	break;
			bool dd = x > root -> c[d] -> key;
			if (root -> c[d] -> c[dd] == null)	{zig(d); break;}	
			d != dd ? zig(d), zig(dd) : zigzig(d);
		}
		finish(0), finish(1);
		root -> rz();
		if (x > root -> key)	select(root -> c[0] -> size + 1);
	}
 
	void ins(int x)
	{
		search(x);	
		node *oldroot = root;
		root = new node(x, oldroot -> c[0], oldroot);
		oldroot -> c[0] = null;
		oldroot -> rz();
		root -> rz();
	}
	void del(int x)
	{
		search(x);
		node *oldroot = root;	
		root = root -> c[1];
		select(0);
		root -> c[0] = oldroot -> c[0];
		root -> rz();
		delete oldroot;
	}
	int sel(int k){return select(k - 1), root -> key;}
	int ran(int x){return search(x), root -> c[0] -> size + 1;}
}sp;
 
 
void doit()
{
	sp.ins(1);
	int count = -1;
	while (1)
	{
		int now = sp.sel(1);	
		++ count;
		if (count == n)
		{
			printf("%d\n",now);
			return;	
		}
		if (sp.root -> size >= 2000000)	continue;
		for (int i = 0; i != k; ++ i)
		{
			long long tmp = (long long)now * a[i];	
			if (tmp > 2000000000)	continue;
			sp.search(tmp);
			int  p = sp.root -> key;
			if (sp.root->key == tmp)	continue;
			else 	sp.ins(tmp);
		}
		now = sp.sel(1);
		sp.del(now);
	}
}
 
int main()
{
	freopen("humble.in","r",stdin);
	freopen("humble.out","w",stdout);
	init();
	doit();
	return 0;
}










正确方法:

思路: 假如已经有P个丑数,那么我可以把这P个丑数,分别和K个已知素数进行相乘,得到的最小的(同时不能是已经得到的丑数),就是第P+1个丑数。


这其中有一个搜索优化。


第i个素数, 假如和第j个丑数,产生了最小的,也就是第p+1个丑数。 那么这第i个素数,以后如果要产生第X个丑数,他一定从第j个丑数之后搜索。【有点拗口】


细节: 从丑数5,可以产生5*2 = 10.  从丑数2, 可以产生2*5 = 10.  所以在进行产生丑数运算前,要先保证,所有的第i个素数,和他们“当前搜索丑是数j” ,保证素数i * 丑数j > 第P个丑数。


Executing...
   Test 1: TEST OK [0.003 secs, 3756 KB]
   Test 2: TEST OK [0.003 secs, 3756 KB]
   Test 3: TEST OK [0.003 secs, 3756 KB]
   Test 4: TEST OK [0.005 secs, 3756 KB]
   Test 5: TEST OK [0.008 secs, 3756 KB]
   Test 6: TEST OK [0.022 secs, 3756 KB]
   Test 7: TEST OK [0.005 secs, 3756 KB]
   Test 8: TEST OK [0.005 secs, 3756 KB]
   Test 9: TEST OK [0.003 secs, 3756 KB]
   Test 10: TEST OK [0.003 secs, 3756 KB]
   Test 11: TEST OK [0.003 secs, 3756 KB]
   Test 12: TEST OK [0.081 secs, 3756 KB]

All tests OK.


/*
TASK:humble
LANG:C++
*/
#include <cstdio>

int k, n;
int a[102], w[102]={0}, x[100005] = {1};

int main()
{
	freopen("humble.in","r",stdin);
	freopen("humble.out","w",stdout);
	scanf("%d%d", &k, &n);
	for (int i = 0; i != k; ++ i)	scanf("%d", &a[i]);

	for (int j = 1; j <= n; ++ j)
	{
		int tmp = 0x7fffffff, wz;
		for (int i = 0; i != k; ++ i)
			while (x[w[i]] * a[i] <= x[j - 1])	++ w[i];
		for (int i = 0; i != k; ++ i)
		{
			if (x[w[i]] * a[i] < tmp)
			{
				tmp = x[w[i]] * a[i];	
				wz = i;
			}
		}
		++ w[wz];
		x[j] = tmp;
	}
	printf("%d\n", x[n]);
	return 0;
}


你可能感兴趣的:(【USACO3.1.3】丑数 恶心搜索题)