Android的init过程:初始化语言(init.rc)解析

转载注明出处

原文链接:http://blog.csdn.net/nokiaguy/article/details/9109491

简介init.rc

init.rc文件并不是普通的配置文件,而是由一种被称为“Android初始化语言”(Android Init Language,AIL)编写的脚本文件。在了解init如何解析init.rc文件之前,先了解AIL非常必要,否则机械地分析init.rc及其相关文件的源代码也毫无意义。
init.rc可以在编译好的源代码里找到,目录为<Android源代码根目录>out/target/product/<编译的产品name>/root目录下。
AIL由以下4部分组成:
  1. 动作(Actions)
  2. 命令(Commands)
  3. 服务(Services)
  4. 选项(Options)
这四部分都是面向行的代码,也就是说用回车换行符作为每一条语句的分隔符。而每一行的代码由多个符号(Tokens)表示。可以使用反斜杠转义符在Token中插入空格。双引号可以将多个由空格分隔的Tokens合成一个Tokens。如果一行写不下,可以在行尾加上反斜杠,来连接下一行。也就是说,可以用反斜杠将多行代码连接成一行代码。
AIL的注释与很多Shell脚本一行,以#开头。
AIL在编写时需要分为多个部分(Section),而每一部分的开头需要指定Actions或Services。也就是说,每一个Actions或Services确定一个Section。而所有的Commands和Options只能属于最近定义的Section。而所有的Commands和Options只能属于最近定义的Section。如果Commands和Options在第一个Section之前被定义,它们将被忽略。
Actions和Services的名称必须唯一。如果有两个或多个Action或Service拥有同样的名称,那么init在执行它们的时候将抛出错误,并忽略这些Action和Service。
下面来看看Actions、Services、Commands和Options分别应如何设置。

Actions


Actions的语法格式如下:
on <trigger>
    <command>
    <command>
    <command>
也就是说Actions是以关键字on开头的,然后跟一个触发器,接下来是若干命令。例如,下面就是一个标准的Action
on early-init
    # Set init and its forked children's oom_adj.
    write /proc/1/oom_adj -16

    # Set the security context for the init process.
    # This should occur before anything else (e.g. ueventd) is started.
    setcon u:r:init:s0

    start ueventd

# create mountpoints
    mkdir /mnt 0775 root system
其中early-init是触发器,下面几行是command。那么init.rc到底支持哪些触发器呢?

init.rc支持各种触发器

这里列出init.rc支持的常见的5种触发器:
1. boot
这是init执行后第一个被触发Trigger,也就是在 /init.rc被装载之后执行该Trigger 

2. <name>=<value>
当属性<name>被设置成<value>时被触发。例如,
on property:vold.decrypt=trigger_reset_main

3. device-added-<path>
当设备节点被添加时触发

4. device-removed-<path>
当设备节点被移除时添加

5. service-exited-<name>
会在一个特定的服务退出时触发

Actions 命令

1. exec <path> [<argument> ]*
创建和执行一个程序(<path>)。在程序完全执行前,init将会阻塞。由于它不是内置命令,应尽量避免使用exec ,它可能会引起init执行超时。

2. export <name> <value>
在全局环境中将 <name>变量的值设为<value>。(这将会被所有在这命令之后运行的进程所继承)

3. ifup <interface>
启动网络接口

4. import <filename>
指定要解析的其他配置文件。常被用于当前配置文件的扩展

5. hostname <name>
设置主机名

6. chdir <directory>
改变工作目录

7. chmod <octal-mode><path>
改变文件的访问权限

8. chown <owner><group> <path>
更改文件的所有者和组

9. chroot <directory>
改变处理根目录

10. class_start<serviceclass>
启动所有指定服务类下的未运行服务。

11 class_stop<serviceclass>
停止指定服务类下的所有已运行的服务。

12. domainname <name>
设置域名

13. insmod <path>
加载<path>指定的驱动模块

14. mkdir <path> [mode][owner] [group]
创建一个目录<path> ,可以选择性地指定mode、owner以及group。如果没有指定,默认的权限为755,并属于root用户和 root组。

15. mount <type> <device> <dir> [<mountoption> ]*
试图在目录<dir>挂载指定的设备。<device> 可以是mtd@name的形式指定一个mtd块设备。<mountoption>包括 "ro"、"rw"、"re

16. setkey
保留,暂时未用

17. setprop <name><value>
将系统属性<name>的值设为<value>。

18. setrlimit <resource> <cur> <max>
设置<resource>的rlimit (资源限制)

19. start <service>
启动指定服务(如果此服务还未运行)。

20.stop<service>
停止指定服务(如果此服务在运行中)。

21. symlink <target> <path>
建立一个path指向target的符号链接。

22. sysclktz <mins_west_of_gmt>
设置系统时钟基准(0代表时钟滴答以格林威治平均时(GMT)为准)

23. trigger <event>
触发一个事件。用于Action排队

24. wait <path> [<timeout> ]
等待一个文件是否存在,当文件存在时立即返回,或到<timeout>指定的超时时间后返回,如果不指定<timeout>,默认超时时间是5秒。

25. write <path> <string> [ <string> ]*
向<path>指定的文件写入一个或多个字符串。 

Services

Services的选项是服务的修饰符,可以影响服务如何以及怎样运行。服务支持的选项如下:

1. critical
表明这是一个非常重要的服务。如果该服务4分钟内退出大于4次,系统将会重启并进入 Recovery (恢复)模式。

2. disabled
表明这个服务不会同与他同trigger (触发器)下的服务自动启动。该服务必须被明确的按名启动。

3. setenv <name><value>
在进程启动时将环境变量<name>设置为<value>。

4. socket <name><type> <perm> [ <user> [ <group> ] ]
Create a unix domain socketnamed /dev/socket/<name> and pass
its fd to the launchedprocess. <type> must be"dgram", "stream" or "seqpacket".
User and group default to0.
创建一个unix域的名为/dev/socket/<name> 的套接字,并传递它的文件描述符给已启动的进程。<type> 必须是 "dgram","stream" 或"seqpacket"。用户和组默认是0。

5. user <username>
在启动这个服务前改变该服务的用户名。此时默认为 root。

6. group <groupname> [<groupname> ]*
在启动这个服务前改变该服务的组名。除了(必需的)第一个组名,附加的组名通常被用于设置进程的补充组(通过setgroups函数),档案默认是root。

7. oneshot
服务退出时不重启。

8. class <name>
指定一个服务类。所有同一类的服务可以同时启动和停止。如果不通过class选项指定一个类,则默认为"default"类服务。

9. onrestart
当服务重启,执行一个命令(下详)。

源码分析

init_parse_config_file("/init.rc") : 这个方法主要负责初始化和分析init.rc文件。init_parse_config_file函数在init_parser.c文件中实现,代码如下:

int init_parse_config_file(const char *fn)
{
    char *data;
    data = read_file(fn, 0);
    if (!data) return -1;
    /*  实际分析init.rc文件的代码  */
    parse_config(fn, data);
    DUMP();
    return 0;
}

init_parse_config_file方法开始调用了read_file函数打开/init.rc文件,并返回了文件的内容(char *类型),然后最核心的函数是parse_config。该函数也在init_parser.c文件中实现,代码如下:

static void parse_config(const char *fn, char *s)
{
    struct parse_state state;
    struct listnode import_list;
    struct listnode *node;
    char *args[INIT_PARSER_MAXARGS];
    int nargs;

    nargs = 0;
    state.filename = fn;
    state.line = 0;
    state.ptr = s;
    state.nexttoken = 0;
    state.parse_line = parse_line_no_op;

    list_init(&import_list);
    state.priv = &import_list;
    /*  开始获取每一个token,然后分析这些token,每一个token就是有空格、字表符和回车符分隔的字符串
   */
    for (;;) {
        /*  next_token函数相当于词法分析器  */
        switch (next_token(&state)) {
        case T_EOF:  /*  init.rc文件分析完毕  */
            state.parse_line(&state, 0, 0);
            goto parser_done;
        case T_NEWLINE:  /*  分析每一行的命令  */
            /*  下面的代码相当于语法分析器  */
            state.line++;
            if (nargs) {
                int kw = lookup_keyword(args[0]);
                if (kw_is(kw, SECTION)) {
                    state.parse_line(&state, 0, 0);
                    parse_new_section(&state, kw, nargs, args);
                } else {
                    state.parse_line(&state, nargs, args);
                }
                nargs = 0;
            }
            break;
        case T_TEXT:  /*  处理每一个token  */
            if (nargs < INIT_PARSER_MAXARGS) {
                args[nargs++] = state.text;
            }
            break;
        }
    }

parser_done:
    /*  最后处理由import导入的初始化文件  */
    list_for_each(node, &import_list) {
         struct import *import = node_to_item(node, struct import, list);
         int ret;

         INFO("importing '%s'", import->filename);
         /*  递归调用  */ 
         ret = init_parse_config_file(import->filename);
         if (ret)
             ERROR("could not import file '%s' from '%s'\n",
                   import->filename, fn);
    }
}

parse_config方法的代码就比较复杂了,现在先说说该方法的基本处理流程。首先,会调用list_init(&import_list)初始化一个链表,该链表用于存储通过import语句导入的初始化文件名,然后开始在for循环中分析init.rc文件中的每一行代码。最后将init.rc文件分析完后,就会进入parser_done部分,并递归调用init_parse_config_file方法分析通过import导入的初始化文件。

通过分析parse_config方法的原理,感觉也并不复杂。不过分析parse_config方法的具体代码,还需要点编译原理的知识(只是概念上的就可以)。在for循环中调用一个next_token方法不断从init.rc文件中获取token。这里的token,就是一种编程语言的最小单元,也就是不可再分。例如,对于传统的编程语言,if、then等关键字、变量名等标识符都属于一个token。而对于init.rc文件来说,import、on以及触发器的参数值,都属于一个token。

一个完整的编译器(或解析器)最开始需要进行词法和语法分析,词法分析就是在源代码文件中挑出一个个的Token,也就是说,词法分析器的返回值是Token,而语法分析器的输入就是词法分析器的输出。也就是说,语法分析器需要分析一个个的token,而不是一个个的字符。由于init解析语言很简单,所以就将词法和语法分析器放到一起。词法分析器就是next_token函数,而语法分析器就是T_NEWLINE分支中的代码。

先看一下next_token函数(在praser.c文件中实现)是如何获取每一个token的。

int next_token(struct parse_state *state)
{
    char *x = state->ptr;
    char *s;

    if (state->nexttoken) {
        int t = state->nexttoken;
        state->nexttoken = 0;
        return t;
    }
    /*  在这里开始一个字符一个字符地分析  */
    for (;;) {
        switch (*x) {
        case 0:
            state->ptr = x;
            return T_EOF;
        case '\n':
            x++;
            state->ptr = x;
            return T_NEWLINE;
        case ' ':
        case '\t':
        case '\r':
            x++;
            continue;
        case '#':
            while (*x && (*x != '\n')) x++;
            if (*x == '\n') {
                state->ptr = x+1;
                return T_NEWLINE;
            } else {
                state->ptr = x;
                return T_EOF;
            }
        default:
            goto text;
        }
    }

textdone:
    state->ptr = x;
    *s = 0;
    return T_TEXT;
text:
    state->text = s = x;
textresume:
    for (;;) {
        switch (*x) {
        case 0:
            goto textdone;
        case ' ':
        case '\t':
        case '\r':
            x++;
            goto textdone;
        case '\n':
            state->nexttoken = T_NEWLINE;
            x++;
            goto textdone;
        case '"':
            x++;
            for (;;) {
                switch (*x) {
                case 0:
                        /* unterminated quoted thing */
                    state->ptr = x;
                    return T_EOF;
                case '"':
                    x++;
                    goto textresume;
                default:
                    *s++ = *x++;
                }
            }
            break;
        case '\\':
            x++;
            switch (*x) {
            case 0:
                goto textdone;
            case 'n':
                *s++ = '\n';
                break;
            case 'r':
                *s++ = '\r';
                break;
            case 't':
                *s++ = '\t';
                break;
            case '\\':
                *s++ = '\\';
                break;
            case '\r':
                    /* \ <cr> <lf> -> line continuation */
                if (x[1] != '\n') {
                    x++;
                    continue;
                }
            case '\n':
                    /* \ <lf> -> line continuation */
                state->line++;
                x++;
                    /* eat any extra whitespace */
                while((*x == ' ') || (*x == '\t')) x++;
                continue;
            default:
                    /* unknown escape -- just copy */
                *s++ = *x++;
            }
            continue;
        default:
            *s++ = *x++;
        }
    }
    return T_EOF;
}

next_token函数的代码还是很多的,不过原理很简单。就是逐一读取init.rc文件(还有import导入的初始化文件)的字符,并将由空格、“/t“和”/r“分隔的字符串挑出来,并通过state->text返回。如果返回了正常的token,next_token函数就返回T_TEXT。如果一行结束,就返回T_NEWLINE,如果init.rc文件的内容已读取完,就返回T_EOF。

现在回到parse_config函数,先看一下T_TEXT分支。该分支将获得的每一行的token都存储在args数组中。现在来看T_NEWLINE分支。该分支的代码涉及到state.parse_line函数指针,该函数指针指向的函数负责具体的分析工作。但我们发现,一看是该函数指针指向了一个空函数parse_line_no_op,实际上,一开始该函数指针什么都不做,只是为了使该函数一开始不至于为null,否则调用出错。

现在来回顾一下T_NEWLINE分支的完整代码

case T_NEWLINE:
    state.line++;
    if (nargs) {
        int kw = lookup_keyword(args[0]);
        if (kw_is(kw, SECTION)) {
            state.parse_line(&state, 0, 0);
            parse_new_section(&state, kw, nargs, args);
        } else {
            state.parse_line(&state, nargs, args);
        }
        nargs = 0;
    }
    break;

在上面的代码中首先调用了lookup_keyword方法搜索关键字,该方法的作用是判断当前行是否合法。判断依据是根据init初始化语言预定义的关键字查询,如果未查到,返回K_UNKNOWN。lookup_keyword方法在init_parser.c文件中实现,代码如下:

int lookup_keyword(const char *s)
{
    switch (*s++) {
    case 'c':
    if (!strcmp(s, "opy")) return K_copy;
        if (!strcmp(s, "apability")) return K_capability;
        if (!strcmp(s, "hdir")) return K_chdir;
        if (!strcmp(s, "hroot")) return K_chroot;
        if (!strcmp(s, "lass")) return K_class;
        if (!strcmp(s, "lass_start")) return K_class_start;
        if (!strcmp(s, "lass_stop")) return K_class_stop;
        if (!strcmp(s, "lass_reset")) return K_class_reset;
        if (!strcmp(s, "onsole")) return K_console;
        if (!strcmp(s, "hown")) return K_chown;
        if (!strcmp(s, "hmod")) return K_chmod;
        if (!strcmp(s, "ritical")) return K_critical;
        break;
    case 'd':
        if (!strcmp(s, "isabled")) return K_disabled;
        if (!strcmp(s, "omainname")) return K_domainname;
        break;
     … …
    case 'o':
        if (!strcmp(s, "n")) return K_on;
        if (!strcmp(s, "neshot")) return K_oneshot;
        if (!strcmp(s, "nrestart")) return K_onrestart;
        break;
    case 'r':
        if (!strcmp(s, "estart")) return K_restart;
        if (!strcmp(s, "estorecon")) return K_restorecon;
        if (!strcmp(s, "mdir")) return K_rmdir;
        if (!strcmp(s, "m")) return K_rm;
        break;
    case 's':
        if (!strcmp(s, "eclabel")) return K_seclabel;
        if (!strcmp(s, "ervice")) return K_service;
        if (!strcmp(s, "etcon")) return K_setcon;
        if (!strcmp(s, "etenforce")) return K_setenforce;
        if (!strcmp(s, "etenv")) return K_setenv;
        if (!strcmp(s, "etkey")) return K_setkey;
        if (!strcmp(s, "etprop")) return K_setprop;
        if (!strcmp(s, "etrlimit")) return K_setrlimit;
        if (!strcmp(s, "etsebool")) return K_setsebool;
        if (!strcmp(s, "ocket")) return K_socket;
        if (!strcmp(s, "tart")) return K_start;
        if (!strcmp(s, "top")) return K_stop;
        if (!strcmp(s, "ymlink")) return K_symlink;
        if (!strcmp(s, "ysclktz")) return K_sysclktz;
        break;
    case 't':
        if (!strcmp(s, "rigger")) return K_trigger;
        break;
    case 'u':
        if (!strcmp(s, "ser")) return K_user;
        break;
    case 'w':
        if (!strcmp(s, "rite")) return K_write;
        if (!strcmp(s, "ait")) return K_wait;
        break;
    }
    return K_UNKNOWN;
}

lookup_keyword方法按26个字母顺序(关键字首字母)进行处理。

现在回到parse_config方法的T_NEWLINE分支,接下来调用kw_is宏具体判断当前行是否合法,该宏以及SECTION宏的定义如下。根据这些代码,明显是keyword_info数组中的某个元素的flags成员变量的值取最后一位。

#define SECTION 0x01
#define kw_is(kw, type) (keyword_info[kw].flags & (type))

现在问题又转到keyword_info数组了。该数组也在init_parser.c文件中定义,代码如下:

#include "keywords.h"
#define KEYWORD(symbol, flags, nargs, func) \
    [ K_##symbol ] = { #symbol, func, nargs + 1, flags, },
struct {
    const char *name;
    int (*func)(int nargs, char **args);
    unsigned char nargs;
    unsigned char flags;
} keyword_info[KEYWORD_COUNT] = {
    [ K_UNKNOWN ] = { "unknown", 0, 0, 0 },
#include "keywords.h"
};

从表面上看,keyword_info数组是一个struct数组,但本质上,是一个map。例如,数组元素{”unknown“, 0, 0, 0}的key是K_UNKNOWN,而#include ”keywords.h“大有玄机。上面的代码中引用了两次keywords.h文件,现在可以看一下keywords.h文件的代码。

#ifndef KEYWORD
int do_chroot(int nargs, char **args);
… …
int do_export(int nargs, char **args);
int do_hostname(int nargs, char **args);
int do_rmdir(int nargs, char **args);
int do_loglevel(int nargs, char **args);
int do_load_persist_props(int nargs, char **args);
int do_wait(int nargs, char **args);
#define __MAKE_KEYWORD_ENUM__
/*
"K_chdir", ENUM
*/
#define KEYWORD(symbol, flags, nargs, func) K_##symbol,
enum {
    K_UNKNOWN,
#endif
    KEYWORD(capability,  OPTION,  0, 0)
    KEYWORD(chdir,       COMMAND, 1, do_chdir)
    KEYWORD(chroot,      COMMAND, 1, do_chroot)
    KEYWORD(class,       OPTION,  0, 0)
    KEYWORD(class_start, COMMAND, 1, do_class_start)
    KEYWORD(class_stop,  COMMAND, 1, do_class_stop)
    KEYWORD(class_reset, COMMAND, 1, do_class_reset)
    KEYWORD(console,     OPTION,  0, 0)
    … …
    KEYWORD(critical,    OPTION,  0, 0)
    KEYWORD(load_persist_props,    COMMAND, 0, do_load_persist_props)
    KEYWORD(ioprio,      OPTION,  0, 0)
#ifdef __MAKE_KEYWORD_ENUM__
    KEYWORD_COUNT,
};
#undef __MAKE_KEYWORD_ENUM__
#undef KEYWORD
#endif

从keywords.h文件的代码可以看出,如果未定义KEYWORD宏,则在keywords.h文件中定义一个KEYWORD宏,以及一个枚举类型,其中K_##symbol的##表示连接的意思。而这个KEYWORD宏只用了第一个参数(symbol)。例如,KEYWORD(chdir, COMMAND, 1, do_chdir)就会生成K_chdir。

而在keyword_info结构体数组中再次导入keywords.h文件,这时KEYWORD宏已经在init_parser.c文件中重新定义,所以第一次导入keywords.h文件使用的是如下宏。

#define KEYWORD(symbol, flags, nargs, func) \
    [ K_##symbol ] = { #symbol, func, nargs + 1, flags, },

这下就明白了,如果不使用keywords.h文件,直接将所有的代码都写到init_parser.c文件中,就会有下面的代码。

int do_chroot(int nargs, char **args);
… …
enum
{
K_UNKNOWN,
K_ capability,
K_ chdir,
… …
}
#define KEYWORD(symbol, flags, nargs, func) \
    [ K_##symbol ] = { #symbol, func, nargs + 1, flags, },
struct {
    const char *name;
    int (*func)(int nargs, char **args);
    unsigned char nargs;
    unsigned char flags;
} keyword_info[KEYWORD_COUNT] = {
    [ K_UNKNOWN ] = { "unknown", 0, 0, 0 },
    [K_ capability] = {" capability ", 0, 1, OPTION },
    [K_ chdir] = {"chdir", do_chdir ,2, COMMAND},
    … …
#include "keywords.h"
};

可能我们还记着lookup_keyword方法,该方法的返回值就是keyword_info数组的key。

在keywords.h前面定义的函数指针都是处理init.rc文件中service、action和command的。现在就剩下一个问题了,在哪里为这些函数指针赋值呢,也就是说,具体处理每个部分的函数在哪里呢。现在回到前面的语法分析部分。如果当前行合法,则会执行parse_new_section函数(在init_parser.c文件中实现),该函数将为section和action设置处理这两部分的函数。parse_new_section函数的代码如下:

void parse_new_section(struct parse_state *state, int kw,
                       int nargs, char **args)
{
    printf("[ %s %s ]\n", args[0],
           nargs > 1 ? args[1] : "");
    switch(kw) {
    case K_service:  //  处理service
        state->context = parse_service(state, nargs, args);
        if (state->context) {
            state->parse_line = parse_line_service;
            return;
        }
        break;
    case K_on:  //  处理action
        state->context = parse_action(state, nargs, args);
        if (state->context) {
            state->parse_line = parse_line_action;
            return;
        }
        break;
    case K_import:   //  单独处理import导入的初始化文件。
        parse_import(state, nargs, args);
        break;
    }
    state->parse_line = parse_line_no_op;
}

现在看一下处理service的函数(parse_line_service)。

static void parse_line_service(struct parse_state *state, int nargs, char **args)
{
    struct service *svc = state->context;
    struct command *cmd;
    int i, kw, kw_nargs;

    if (nargs == 0) {
        return;
    }

    svc->ioprio_class = IoSchedClass_NONE;

    kw = lookup_keyword(args[0]);
    switch (kw) {
    case K_capability:
        break;
    … …
    case K_group:
        if (nargs < 2) {
            parse_error(state, "group option requires a group id\n");
        } else if (nargs > NR_SVC_SUPP_GIDS + 2) {
            parse_error(state, "group option accepts at most %d supp. groups\n",
                        NR_SVC_SUPP_GIDS);
        } else {
            int n;
            svc->gid = decode_uid(args[1]);
            for (n = 2; n < nargs; n++) {
                svc->supp_gids[n-2] = decode_uid(args[n]);
            }
            svc->nr_supp_gids = n - 2;
        }
        break;
    case K_keycodes:
        if (nargs < 2) {
            parse_error(state, "keycodes option requires atleast one keycode\n");
        } else {
            svc->keycodes = malloc((nargs - 1) * sizeof(svc->keycodes[0]));
            if (!svc->keycodes) {
                parse_error(state, "could not allocate keycodes\n");
            } else {
                svc->nkeycodes = nargs - 1;
                for (i = 1; i < nargs; i++) {
                    svc->keycodes[i - 1] = atoi(args[i]);
                }
            }
        }
        break;
        … …
     }
    ……
}

ction的处理方式与service类似,读者可以自行查看相应的函数代码。现在一切都清楚了。处理service的函数是parse_line_service,处理action的函数是parse_line_action。而前面的state.parse_line根据当前是service还是action,指向这两个处理函数中的一个,并执行相应的函数处理actioncommand和serviceoption。

综合上述,实际上分析init.rc文件的过程就是通过一系列地处理,最终转换为通过parse_line_service或parse_line_action函数分析Init.rc文件中每一行的行为。

你可能感兴趣的:(Android的init过程:初始化语言(init.rc)解析)