专题二 1015
A friend of you is doing research on the Traveling Knight Problem (TKP) where you are to find the shortest closed tour of knight moves that visits each square of a given set of n squares on a chessboard exactly once. He thinks that the most difficult part of the problem is determining the smallest number of knight moves between two given squares and that, once you have accomplished this, finding the tour would be easy.
Of course you know that it is vice versa. So you offer him to write a program that solves the “difficult” part.
Your job is to write a program that takes two squares a and b as input and then determines the number of knight moves on a shortest route from a to b.
The input file will contain one or more test cases. Each test case consists of one line containing two squares separated by one space. A square is a string consisting of a letter (a-h) representing the column and a digit (1-8) representing the row on the chessboard.
For each test case, print one line saying “To get from xx to yy takes n knight moves.”
e2 e4
a1 b2
b2 c3
a1 h8
a1 h7
h8 a1
b1 c3
f6 f6
To get from e2 to e4 takes 2 knight moves.
To get from a1 to b2 takes 4 knight moves.
To get from b2 to c3 takes 2 knight moves.
To get from a1 to h8 takes 6 knight moves.
To get from a1 to h7 takes 5 knight moves.
To get from h8 to a1 takes 6 knight moves.
To get from b1 to c3 takes 1 knight moves.
To get from f6 to f6 takes 0 knight moves
给你一个8*8的棋盘,骑士的开始位置,结束位置,让你求得骑士从开始位置开始揍到结束位置需要最小的步数是多少?(注意,骑士走日字)
包含多组数据,每一行都是一组开始位置和结束位置,位置由两个字符组成,一个是小写字母(a-h),一个是数字(1-8),起始位置结束位置由一个空格隔开.
从起始位置到结束位置,骑士所要走过的最小的步数.按照样例的格式来。
在国际象棋中Knight称“马”或“骑士”,Knight的走法和中国象棋中马相同,同样是走“日”字,或英文字母大写的“L”形:即先向左(或右)走1格,再向上(或下)走2格;或先向左(或右)走2格,再向上(或下)走1格。不同的是,囯际象棋的Knight没有“绊马脚”的限制,故Knight可越过其他棋子。吃子与走法相同。
简单的BFS ,Knight移动有八个方向, 即是在一个3*2的格子中进行对角线移动,通过画图很容易就知道骑士最多可以朝八个方向移动,那么就朝8个方向进行BFS即可
简单的BFS ,只要了解了骑士的走法,不能难得出算法。
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <queue>
using namespace std;
int c[9][9];
int dir[8][2] = {{-2,-1},{-2,1},{-1,2},{1,2},{2,1},{2,-1},{1,-2},{-1,-2}};
typedef struct
{
int x,y,count;
}node;
node start,finish;
int bfs()
{
memset(c,0,sizeof(c));
node pre,cur;
start.count = 0;
queue<node> q;
q.push(start);
c[start.x][start.y] = 1;
while(!q.empty())
{
pre = q.front();
q.pop();
if(pre.x == finish.x&&pre.y == finish.y)
return pre.count;
for(int i = 0; i < 8; i++)
{
cur.x = pre.x + dir[i][0];
cur.y = pre.y + dir[i][1];
if(cur.x<1||cur.x>8||cur.y<1||cur.y>8)continue;
if(c[cur.x][cur.y]==1)continue;
c[cur.x][cur.y] = 1;
cur.count = pre.count + 1;
q.push(cur);
}
}
return -1;
}
int main()
{
char row,end;
int col,ed;
int min;
while(scanf("%c",&row)!=EOF)
{
scanf("%d",&col);
getchar();
scanf("%c%d",&end,&ed);
getchar();
start.x = row-'a'+1;
start.y = col;
finish.x = end-'a'+1;
finish.y = ed;
if(start.x==finish.x&&start.y==finish.y)
min = 0;
else min = bfs();
printf("To get from %c%d to %c%d takes %d knight moves.\n",row,col,end,ed,min);
}
return 0;
}