图论〔GraphTheory〕是数学的一个分支。它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。
在这一专题,我学到了有向图,无向图,完全图等概念,也学习了并查集,最小生成树,单源最短路径等问题的解决思路,学会了Prim,kruskal,Dijkstra等算法。
图论,是ACM程序设计这门课的最后一个专题,我觉得也是最难的一个专题,上述所提及的算法,只是图论中算法的极小一部分,图论的综合性比较强,比如有的图论题甚至会用到贪心或搜索的思想,所以遇到具体的问题应该具体的对待。
最小生成树:在一给定的无向图G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即),而w(u, v) 代表此边的权重,若存在 T 为 E 的子集(即)且为无循环图,使得
的 w(T) 最小,则此T 为 G 的最小生成树。
[1]
求MST的一般算法可描述为:针对图G,从空树T开始,往集合T中逐条选择并加入n-1条安全边(u,v),最终生成一棵含n-1条边的MST。
当一条边(u,v)加入T时,必须保证T∪{(u,v)}仍是MST的子集,我们将这样的边称为T的安全边。
Prim算法简述
1).输入:一个加权连通图,其中顶点集合为V,边集合为E;
2).初始化:Vnew= {x},其中x为集合V中的任一节点(起始点),Enew= {},为空;
3).重复下列操作,直到Vnew= V:
a.在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);
b.将v加入集合Vnew中,将<u, v>边加入集合Enew中;
4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。[1]
Kruskal算法简述
假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含 n 个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有 n 棵树的一个森林。之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,也就是说,将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直至森林中只有一棵树,也即子图中含有 n-1条边为止。[1]
GenerieMST(G){//求G的某棵MST
T〈-¢; //T初始为空,是指顶点集和边集均空
while T未形成G的生成树 do{
找出T的一条安全边(u,v);//即T∪{(u,v)}仍为MST的子集
T=T∪{(u,v)}; //加入安全边,扩充T
}
return T;//T为生成树且是G的一棵MST
}
注意:
下面给出的两种求MST的算法均是对上述的一般算法的求精,两算法的区别仅在于求安全边的方法不同。
为简单起见,下面用序号0,1,…,n-1来表示顶点集,即是:
V(G)={0,1,…,n-1},
G 中边上的权解释为长度,并设T=(U,TE)