1.opencv中svm参数和函数
svm参数:
CvSVMParams::CvSVMParams() :
svm_type(CvSVM::C_SVC), kernel_type(CvSVM::RBF), degree(0),
gamma(1), coef0(0), C(1), nu(0), p(0), class_weights(0)
{
term_crit = cvTermCriteria( CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 1000, FLT_EPSILON );
}
svm_type表示SVM类型:
{C_SVC=100, NU_SVC=101, ONE_CLASS=102, EPS_SVR=103, NU_SVR=104 };//SVC是SVM分类器,SVR是SVM回归
kernel_type表示核函数的类型:
{ LINEAR=0, POLY=1, RBF=2, SIGMOID=3 }; //提供四种核函数,分别是线性,多项式,径向基,sigmoid型函数。
degree针对多项式核函数degree的设置,
gamma针对多项式/rbf/sigmoid核函数的设置
oef0针对多项式/sigmoid核函数的设置
默认值degree = 0,gamma = 1,coef0 = 0
svm训练函数
bool CvSVM::train( const CvMat* _train_data, const CvMat* _responses,
const CvMat* _var_idx, const CvMat* _sample_idx, CvSVMParams _params )
用的时候:svm.train(dataMat, labelMat, NULL, NULL, param);
svm预测函数
svm.predict(testMat);
支持向量机的个数
svm.get_support_vector_count();
支持向量机
svm.get_support_vector(i)
保存训练结果
svm.save("svmResult.txt");
用法流程:
1.设置svm参数
2.输入训练样本矩阵
3.训练样本
4.输入测试数据,根据训练结果分类
/////////svm///////// #include "cv.h" #include <highgui.h> #include "ml.h" #include "iostream" using namespace std; double inputArr[10][13] = { 1,0.708333,1,1,-0.320755,-0.105023,-1,1,-0.419847,-1,-0.225806,0,1, -1,0.583333,-1,0.333333,-0.603774,1,-1,1,0.358779,-1,-0.483871,0,-1, 1,0.166667,1,-0.333333,-0.433962,-0.383562,-1,-1,0.0687023,-1,-0.903226,-1,-1, -1,0.458333,1,1,-0.358491,-0.374429,-1,-1,-0.480916,1,-0.935484,0,-0.333333, -1,0.875,-1,-0.333333,-0.509434,-0.347032,-1,1,-0.236641,1,-0.935484,-1,-0.333333, -1,0.5,1,1,-0.509434,-0.767123,-1,-1,0.0534351,-1,-0.870968,-1,-1, 1,0.125,1,0.333333,-0.320755,-0.406393,1,1,0.0839695,1,-0.806452,0,-0.333333, 1,0.25,1,1,-0.698113,-0.484018,-1,1,0.0839695,1,-0.612903,0,-0.333333, 1,0.291667,1,1,-0.132075,-0.237443,-1,1,0.51145,-1,-0.612903,0,0.333333, 1,0.416667,-1,1,0.0566038,0.283105,-1,1,0.267176,-1,0.290323,0,1 }; double testArr[]= { //0.25,1,1,-0.226415,-0.506849,-1,-1,0.374046,-1,-0.83871,0,-1 1.29,1,1,-0.132075,-0.237443,-1,1,0.51145,-1,-0.612903,0,0.333333 }; int main() { //1.svm参数设置 CvSVM svm; CvSVMParams param; param.svm_type = 100; param.kernel_type = 1; param.degree = 2; param.gamma = 1; param.coef0 = 0; //2.输入样本矩阵 CvMat *trainMat = cvCreateMat(10, 12, CV_32FC1); CvMat *labelMat = cvCreateMat(10, 1, CV_32SC1);//标签要有符号,代表正负 for (int i=0; i<10; i++) { for (int j=0; j<12; j++) { cvSetReal2D(trainMat, i, j, inputArr[i][j+1]); } cvSetReal2D(labelMat, i, 0, inputArr[i][0]); } //3训练样本 //计算时间 double t = (double)cvGetTickCount(); svm.train(trainMat, labelMat, NULL, NULL, param); t = (double)cvGetTickCount() - t; double timecost = t/(cvGetTickFrequency()*1000); cout<<"svm train耗时:"<<timecost<<"ms"<<endl; //保存训练结果 svm.save("svmResult.txt"); CvMat *testMat = cvCreateMat(1, 12, CV_32FC1); for (int i=0; i<12; i++) { cvSetReal2D(testMat, 0, i, testArr[i]); } //4预测分类 float flag = 0; flag = svm.predict(testMat); int c = svm.get_support_vector_count(); cout<<"svm个数"<<c<<endl; for (int i=0; i<c; i++) { const float* v = svm.get_support_vector(i); for(int i=0;i<12;i++) { cout<<*(v+i)<<","; } cout<<endl; } cout<<"testMat分类结果:"<<flag<<endl; system("pause"); cvReleaseMat(&trainMat); cvReleaseMat(&labelMat); cvReleaseMat(&testMat); return 0; }