- 【百问百答系列】-全面了解Transformer(未来发展)
什么都想学的阿超
原理概念#深度学习transformer深度学习人工智能
【百问百答系列】-全面了解Transformer引言初次接触Transformer时,那些复杂的概念和精妙的架构设计,着实让我困惑不已。但随着一个一个问题的深入探究,从它的基本概念、原理架构,到如何训练、模型优化,再到其广泛的应用领域以及充满潜力的未来发展,我对它的理解也越来越深刻。希望借由这个百问百答系列,把在学习Transformer过程中的思考、疑问与收获分享出来。未来发展97.随着数据量的
- ffplay播放器源码(七)overlay滤镜
指掀涛澜天下惊
msys2ffplayffmpegc++视频编解码ffmpeg音视频c++
本章介绍在mfc-ffplay(源码已删除了所有相关滤镜的代码)播放器增加overlay滤镜在视频里面加logo水印图片,效果图:滤镜介绍滤镜(Filters)是FFmpeg库提供的一套强大的工具,滤镜可以应用于视频的每一帧,也可以应用于音频的每一个样本,从而实现各种效果,如缩放、裁剪、旋转视频,调整颜色、对比度、亮度,或者对音频进行混音、延迟、回声等处理。查看FFmpeg滤镜种类命令:ffmpe
- 数字信道化过程中多相滤波器组matlab代码及测试
�时过境迁,物是人非
matlab算法开发语言
数字信道化过程中多相滤波器组matlab代码及测试列表polyPhaseFilter/polyPhaseFilter.m , 1894polyPhaseFilter/test_polyPhaseFilter.m , 792
- Pytorch:以CIFAR-10分类为例,给出了神经网络的训练流程
Xiao_Ya__
深度学习pytorchpytorch分类神经网络
下面给出了神经网络的训练流程,包括数据加载与预处理、网络定义、损失函数和优化器定义、网络训练和网络测试。importtorchastimporttorchvisionastvimporttorchvision.transformsastransformsfromtorchvision.transformsimportToPILImageimporttorch.nnasnnimporttorch.n
- Spring MVC框架二:创建第一个MVC程序
嘵奇
SpringMVCspringmvcjava
精心整理了最新的面试资料,有需要的可以自行获取点击前往百度网盘获取点击前往夸克网盘获取有两种方式利用配置1、利用IDEA新建一个Maven项目,添加一个web支持2、导入常用的依赖junitjunit4.12org.springframeworkspring-webmvc5.1.9.RELEASEjavax.servletservlet-api2.5javax.servlet.jspjsp-api
- Python微调DeepSeek-R1-Distill-Qwen-1.5B模型:使用Transformers和PyTorch进行训练
煤炭里de黑猫
pytorchpython人工智能机器学习
前言近年来,基于Transformer架构的预训练语言模型如GPT、BERT等已经取得了显著的成果,广泛应用于自然语言处理(NLP)的各个领域。为了让这些模型更加适应特定任务,我们通常会进行微调(Fine-tuning)。本博客将详细介绍如何微调一个名为Qwen-1.5B的模型,使用HuggingFace的Transformers库与PyTorch框架来实现。我们将通过一步步的代码解析,帮助你理解
- leetcode 119. 杨辉三角 II
圣保罗的大教堂
leetcode每日一题leetcode
给定一个非负索引rowIndex,返回「杨辉三角」的第rowIndex行。在「杨辉三角」中,每个数是它左上方和右上方的数的和。示例1:输入:rowIndex=3输出:[1,3,3,1]示例2:输入:rowIndex=0输出:[1]示例3:输入:rowIndex=1输出:[1,1]提示:0<=rowIndex<=33分析:杨辉三角是二项式系数在三角形中的一种几何排列。可以利用组合数公式,从第一个数开
- 机器学习01
天行者@
机器学习人工智能深度学习
机器学习的基本过程如下:1.数据获取2.数据划分3.特征提取4.模型选择与训练5.模型评估6.模型调优一、特征工程(重点)0.特征工程步骤为:特征提取(如果不是像dataframe那样的数据,要进行特征提取,比如字典特征提取,文本特征提取)无量纲化(预处理)归一化标准化降维底方差过滤特征选择主成分分析-PCA降维1.特征工程API实例化转换器对象,转换器类有很多,都是Transformer的子类,
- 使用Filter实现CORS跨域请求
阿湯哥
spring
在JavaWeb应用中,可以通过自定义Filter来处理跨域请求,主要涉及设置CORS(跨域资源共享)相关的HTTP响应头。以下是详细实现步骤:实现跨域处理的Filter示例importjavax.servlet.*;importjavax.servlet.http.HttpServletRequest;importjavax.servlet.http.HttpServletResponse;im
- spark1.x和spark2.x的区别
xuxu1116
sparkspark1.x与2.x的区别
spark2.x版本相对于1.x版本,有挺多地方的修改,1Spark2ApacheSpark作为编译器:增加新的引擎Tungsten执行引擎,比Spark1快10倍2ml做了很大的改进,支持协同过滤http://spark.apache.org/docs/latest/ml-collaborative-filtering.html3spark2org.apache.spark.sql加了Spark
- 异配图对比学习24整理
mumukehao
异配图对比学习对比学习异配图
数据集介绍:大类数据集名称pyg‘cora’,‘citeseer’,‘pubmed’,‘cornell’,‘texas’,wisconsin’,flickr,reddit,actoryandexchameleon_filtered,squirrel_filtered,roman_empire,amazon_ratings,minesweeper,tolokers,questionslinkx‘ar
- Introductionto eBPF and BCC Creating powerful instrumentation
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介为什么要写这篇文章?eBPF(extendedBerkeleyPacketFilter)2012年提出的一种虚拟机,可以对Linux内核中的网络数据包进行高级过滤、修改、收集等操作,并且是安全且免费的。BCC(BerkeleyCloudComputingCompiler),是由该团队开发的一套工具链,用于编译、加载并运行eBPF程序。同时,Rust编程语言也成为
- 告别复杂分词:Transformers轻松搞定文本处理
星际编程喵
Python探索之旅python算法机器学习深度学习自然语言处理
前言你是否曾经面对文本处理任务时,一头雾水,苦于找不到高效的解决方案?想象一下,手动处理那些长篇文本,分词、标注、清理——光是想想就让人头疼。别担心!今天这篇文章将带你一起走进一个深受AI界热爱的工具——Transformers库,特别是AutoTokenizer的神奇功能。这个工具可以让你轻松处理文本,节省时间,还能保证高效准确。无论你是刚入门的新人,还是经验丰富的开发者,它都能帮助你在自然语言
- GPT-2源码实现及GPT-3、GPT-3.5、GPT-4及GPT-5内幕解析(二)
段智华
深入理解ChatGPTChatGPT国内OpenAIGPT-3GPT-4
GPT-2源码实现及GPT-3、GPT-3.5、GPT-4及GPT-5内幕解析(二)Gavin大咖微信:NLP_Matrix_Space5.2GPT-2源码实现逐行解析本节讲解GPT-2源码,gpt2.py是一个使用NumPy实现的代码,在代码中实现了GELU激活函数、softmax函数、层归一化、线性层、前馈神经网络、多头自注意力机制、Transformer块、GPT2模型以及文本生成函数,通过
- 开源模型应用落地-Qwen1.5-MoE-1/3的激活参数量达到7B模型的性能
开源技术探险家
开源模型-实际应用落地#深度学习语言模型自然语言处理
一、前言2024.03.28阿里推出Qwen系列的首个MoE模型,Qwen1.5-MoE-A2.7B。它仅拥有27亿个激活参数,但其性能却能与当前最先进的70亿参数模型,如Mistral7B和Qwen1.5-7B相媲美。但是目前只有HFtransformers和vLLM支持该模型。二、术语介绍2.1.混合专家(MoE)架构是一种机器学习模型的结构设计,它将一个复杂的任务分解成多个相对简单的子任务,
- 布隆过滤器:一种简单而高效的集合查询方法
菜就多练少说
Redis分布式系统哈希算法散列表算法
今天,我们来介绍一个非常高效、空间节约的集合查询工具——布隆过滤器(BloomFilter)。它是一种概率型数据结构,特别适合用于检测一个元素是否存在于集合中,并且它的查询速度非常快,且占用的空间非常小。尽管布隆过滤器有可能误判(假阳性),但是它不会漏判(假阴性)。一、布隆过滤器的基本概念布隆过滤器由一个位数组和多个哈希函数构成。它的工作原理如下:添加元素:通过多个哈希函数对元素进行哈希,得到多个
- 深度学习笔记——常见的Transformer位置编码
好评笔记
深度学习笔记深度学习transformer人工智能
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍3种常见的Transformer位置编码——正弦/余弦位置编码(sin/cos)、基于频率的二维位置编码(2DFrequencyEmbeddings)、旋转式位置编码(RoPE)文章目录Transformer中常见的编码方式正弦/余弦位置编码(SinusoidalPositionalEncoding)基于频率的
- JSP 表达式语言
wjs2024
开发语言
JSP表达式语言引言JSP(JavaServerPages)是一种用于创建动态网页的技术,它结合了Java编程语言和HTML。JSP表达式语言(EL)是JSP页面开发中的一个重要组成部分,它允许开发者在JSP页面中直接插入Java代码片段,以简化动态内容的生成。本文将详细介绍JSP表达式语言的基本概念、语法规则及其在实际开发中的应用。JSP表达式语言概述什么是JSP表达式语言?JSP表达式语言(E
- 基于SpringBoot的校园消费点评管理系统
计算机学姐
Java精选实战项目源码SpringBoot源码Vue源码springboot后端javavue.jsspringjava-eemysql
作者:计算机学姐开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码精品专栏:Java精选实战项目源码、Python精选实战项目源码、大数据精选实战项目源码系统展示【2025最新】基于Java+SpringBoot+Vu
- OpenCV每日函数 图像过滤模块 (3) boxFilter函数
坐望云起
深度学习从入门到精通OpenCV从入门到精通opencv计算机视觉人工智能
一、概述使用箱形滤镜模糊图像,该函数使用内核平滑图像:其中非归一化箱形滤波器可用于计算每个像素邻域上的各种积分特征,例如图像导数的协方差矩阵(用于密集光流算法等)。如果您需要计算可变大小窗口上的像素和,请使用积分图。二、boxFilter函数1、函数原型cv::boxFilter(InputArraysrc,OutputArraydst,intddepth,Sizeksize,Pointancho
- 为什么词向量和权重矩阵dot运算就能得到想要的效果呢?
cjl30804
矩阵线性代数nlp
最近在学习NLP算法的时候,进入到了深水区以后,发现了弄懂这个才是核心中的核心,抓住了主要矛盾了。特意拿出来跟大家分享。词向量(WordEmbeddings)和权重矩阵的点积运算之所以能够帮助我们实现特定的效果,主要是因为它们在神经网络架构中扮演的角色以及背后的数学原理。具体来说,在自然语言处理任务中,这种操作通常出现在如Transformer模型中的自注意力机制里。让我们深入探讨一下为什么这种方
- Engineering A Large Language Model From Scratch
UnknownBody
语言模型人工智能自然语言处理
本文是LLM系列文章,针对《EngineeringALargeLanguageModelFromScratch》的翻译。从头开始设计一个大语言模型摘要1引言2Atinuke算法3结果4相关工作5讨论6结论摘要自然语言处理(NLP)中深度学习的激增导致了创新技术的发展和发布,这些技术能够熟练地理解和生成人类语言。Atinuke是一种基于Transformer的神经网络,通过使用独特的配置来优化各种语
- Transformer 在RxJava中的使用
xiaopangcame
rxjavarxjava
Transformer用途Transformer,顾名思义是转换器的意思。早在RxJava1.x版本就有了Observable.Transformer、Single.Transformer和Completable.Transformer,在2.x版本中变成了ObservableTransformer、SingleTransformer、CompletableTransformer、Flowable
- 深度学习(2)-深度学习关键网络架构
yyc_audio
人工智能机器学习深度学习
关键网络架构深度学习有4种类型的网络架构:密集连接网络、卷积神经网络、循环神经网络和Transformer。每种类型的模型都是针对特定的输入模式,网络架构包含了关于数据结构的假设,即模型搜索的假设空间。某种架构能否解决某个问题,完全取决于问题的数据结构与所选的网络架构假设之间是否匹配。这些不同类型的网络可以很容易组合起来,实现更大的多模式模型,就像拼乐高积木一样。某种程度上来说,深度学习的层就是信
- 如何在Java中实现多头注意力机制:从Transformer模型入手
省赚客app开发者
javatransformer开发语言
如何在Java中实现多头注意力机制:从Transformer模型入手大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!多头注意力机制(Multi-HeadAttention)是Transformer模型中的关键组件,广泛用于自然语言处理(NLP)任务中。它允许模型在不同的子空间中并行地关注输入序列的不同部分,从而提高了模型的表达能力。在本文中,我们将详细介绍如何在Jav
- transformers java_Transformer 在RxJava中的使用
欢小颜
transformersjava
Transformer.jpegTransformer用途Transformer,顾名思义是转换器的意思。早在RxJava1.x版本就有了Observable.Transformer、Single.Transformer和Completable.Transformer,在2.x版本中变成了ObservableTransformer、SingleTransformer、CompletableTran
- Transformer大模型实战 教师 学生架构
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Transformer大模型实战教师学生架构作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来近年来,随着深度学习技术的飞速发展,自然语言处理(NLP)领域取得了显著的进步。其中,Transformer模型作为一种基于自注意力机制的深度神经网络结构,因其优越的性能和灵活的适用性,在NLP任务中得到了广泛应用。然而,Trans
- Transformer模型量化Quantization 笔记
Foolbird123
transformer人工智能深度学习
模型参数与显存占用计算基础为了详细说明模型的参数数量和每个参数在显存中占用的空间大小,我们以facebookOPT-6.7B模型为例。逐步推理计算过程:1.估计参数总量:OPT-6.7B模型指一个含有大约6.7Billion(67亿)个参数的模型。2.计算单个参数的显存占用:OPT-6.7B模型默认使用Float16,每个参数占用16位(即2字节)的显存。3.计算总显存占用=参数总量×每个参数的显
- 如何在Java中设计高效的Transformer模型架构
省赚客app开发者
javatransformer架构
如何在Java中设计高效的Transformer模型架构大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!Transformer模型自从2017年提出以来,凭借其出色的性能和灵活性,在自然语言处理(NLP)和其他领域取得了显著的成功。Transformer的核心在于其自注意力机制和位置编码,它使得模型能够处理长距离依赖,并有效地进行序列到序列的转换。本文将介绍如何在Ja
- java+jsp+sqlserver 2008+Tomcat实现一个简单的搜索引擎
麦田上的字节
高级java教程系列Java搜索引擎
导读:搜索引擎的定义就是指按照既定的策略与方法,采取相关的计算机程序,通过在互联网中进行寻找信息,并显示信息,最后把找到的信息进行整理和筛选,为搜索引擎的使用者提供检索信息的服务,终极目标是为了提供给使用者,他所搜索信息相关的资料的计算机系统。搜索引擎的种类繁多,既可以进行全文的索引,还可以进行目录的索引,不仅有集合式的搜索引擎,还有
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla