请根据学习目录进行学习:android平台硬件驱动原理学习(总)
android基于Linux内核,故该驱动与Linux驱动没有任何不同,为了保证流程的完整性,故这里写一个Hello驱动,供后面的android学习使用,对于已经熟悉linux驱动的朋友,可以跳过此部分的学习,复制驱动编译即可;
一、进入到kernel/common/drivers目录,新建hello目录:
USER-NAME@MACHINE-NAME:~/Android$ cd kernel/common/drivers
USER-NAME@MACHINE-NAME:~/Android/kernel/common/drivers$ mkdir hello
二、在hello目录中增加hello.h文件:
- #ifndef _HELLO_ANDROID_H_
- #define _HELLO_ANDROID_H_
-
- #include <linux/cdev.h>
- #include <linux/semaphore.h>
-
- #define HELLO_DEVICE_NODE_NAME "hello"
- #define HELLO_DEVICE_FILE_NAME "hello"
- #define HELLO_DEVICE_PROC_NAME "hello"
- #define HELLO_DEVICE_CLASS_NAME "hello"
-
- struct hello_android_dev {
- int val;
- struct semaphore sem;
- struct cdev dev;
- };
-
- #endif
这个头文件定义了一些字符串常量宏,在后面我们要用到。此外,还定义了一个字符设备结构体hello_android_dev,这个就是我们虚拟的硬件设备了,val成员变量就代表设备里面的寄存器,它的类型为int,sem成员变量是一个信号量,是用同步访问寄存器val的,dev成员变量是一个内嵌的字符设备,这个Linux驱动程序自定义字符设备结构体的标准方法。
三、在hello目录中增加hello.c文件,这是驱动程序的实现部分。驱动程序的功能主要是向上层提供访问设备的寄存器的值,包括读和写。这里,提供了三种访问设备寄存器的方法,一是通过proc文件系统来访问,二是通过传统的设备文件的方法来访问,三是通过devfs文件系统来访问。下面分段描述该驱动程序的实现。
首先是包含必要的头文件和定义三种访问设备的方法:
- #include <linux/init.h>
- #include <linux/module.h>
- #include <linux/types.h>
- #include <linux/fs.h>
- #include <linux/proc_fs.h>
- #include <linux/device.h>
- #include <asm/uaccess.h>
-
- #include "hello.h"
-
-
- static int hello_major = 0;
- static int hello_minor = 0;
-
-
- static struct class* hello_class = NULL;
- static struct hello_android_dev* hello_dev = NULL;
-
-
- static int hello_open(struct inode* inode, struct file* filp);
- static int hello_release(struct inode* inode, struct file* filp);
- static ssize_t hello_read(struct file* filp, char __user *buf, size_t count, loff_t* f_pos);
- static ssize_t hello_write(struct file* filp, const char __user *buf, size_t count, loff_t* f_pos);
-
-
- static struct file_operations hello_fops = {
- .owner = THIS_MODULE,
- .open = hello_open,
- .release = hello_release,
- .read = hello_read,
- .write = hello_write,
- };
-
-
- static ssize_t hello_val_show(struct device* dev, struct device_attribute* attr, char* buf);
- static ssize_t hello_val_store(struct device* dev, struct device_attribute* attr, const char* buf, size_t count);
-
-
- static DEVICE_ATTR(val, S_IRUGO | S_IWUSR, hello_val_show, hello_val_store);
定义传统的设备文件访问方法,主要是定义hello_open、hello_release、hello_read和hello_write这四个打开、释放、读和写设备文件的方法:
-
- static int hello_open(struct inode* inode, struct file* filp) {
- struct hello_android_dev* dev;
-
-
- dev = container_of(inode->i_cdev, struct hello_android_dev, dev);
- filp->private_data = dev;
-
- return 0;
- }
-
-
- static int hello_release(struct inode* inode, struct file* filp) {
- return 0;
- }
-
-
- static ssize_t hello_read(struct file* filp, char __user *buf, size_t count, loff_t* f_pos) {
- ssize_t err = 0;
- struct hello_android_dev* dev = filp->private_data;
-
-
- if(down_interruptible(&(dev->sem))) {
- return -ERESTARTSYS;
- }
-
- if(count < sizeof(dev->val)) {
- goto out;
- }
-
-
- if(copy_to_user(buf, &(dev->val), sizeof(dev->val))) {
- err = -EFAULT;
- goto out;
- }
-
- err = sizeof(dev->val);
-
- out:
- up(&(dev->sem));
- return err;
- }
-
-
- static ssize_t hello_write(struct file* filp, const char __user *buf, size_t count, loff_t* f_pos) {
- struct hello_android_dev* dev = filp->private_data;
- ssize_t err = 0;
-
-
- if(down_interruptible(&(dev->sem))) {
- return -ERESTARTSYS;
- }
-
- if(count != sizeof(dev->val)) {
- goto out;
- }
-
-
- if(copy_from_user(&(dev->val), buf, count)) {
- err = -EFAULT;
- goto out;
- }
-
- err = sizeof(dev->val);
-
- out:
- up(&(dev->sem));
- return err;
- }
定义通过devfs文件系统访问方法,这里把设备的寄存器val看成是设备的一个属性,通过读写这个属性来对设备进行访问,主要是实现hello_val_show和hello_val_store两个方法,同时定义了两个内部使用的访问val值的方法__hello_get_val和__hello_set_val:
-
- static ssize_t __hello_get_val(struct hello_android_dev* dev, char* buf) {
- int val = 0;
-
-
- if(down_interruptible(&(dev->sem))) {
- return -ERESTARTSYS;
- }
-
- val = dev->val;
- up(&(dev->sem));
-
- return snprintf(buf, PAGE_SIZE, "%d\n", val);
- }
-
-
- static ssize_t __hello_set_val(struct hello_android_dev* dev, const char* buf, size_t count) {
- int val = 0;
-
-
- val = simple_strtol(buf, NULL, 10);
-
-
- if(down_interruptible(&(dev->sem))) {
- return -ERESTARTSYS;
- }
-
- dev->val = val;
- up(&(dev->sem));
-
- return count;
- }
-
-
- static ssize_t hello_val_show(struct device* dev, struct device_attribute* attr, char* buf) {
- struct hello_android_dev* hdev = (struct hello_android_dev*)dev_get_drvdata(dev);
-
- return __hello_get_val(hdev, buf);
- }
-
-
- static ssize_t hello_val_store(struct device* dev, struct device_attribute* attr, const char* buf, size_t count) {
- struct hello_android_dev* hdev = (struct hello_android_dev*)dev_get_drvdata(dev);
-
- return __hello_set_val(hdev, buf, count);
- }
最后,定义模块加载和卸载方法,这里只要是执行设备注册和初始化操作:
-
- static int __hello_setup_dev(struct hello_android_dev* dev) {
- int err;
- dev_t devno = MKDEV(hello_major, hello_minor);
-
- memset(dev, 0, sizeof(struct hello_android_dev));
-
- cdev_init(&(dev->dev), &hello_fops);
- dev->dev.owner = THIS_MODULE;
- dev->dev.ops = &hello_fops;
-
-
- err = cdev_add(&(dev->dev),devno, 1);
- if(err) {
- return err;
- }
-
-
- //init_MUTEX(&(dev->sem));
- sema_init(sem, 1);
-
- dev->val = 0;
-
- return 0;
- }
-
-
- static int __init hello_init(void){
- int err = -1;
- dev_t dev = 0;
- struct device* temp = NULL;
-
- printk(KERN_ALERT"Initializing hello device.\n");
-
-
- err = alloc_chrdev_region(&dev, 0, 1, HELLO_DEVICE_NODE_NAME);
- if(err < 0) {
- printk(KERN_ALERT"Failed to alloc char dev region.\n");
- goto fail;
- }
-
- hello_major = MAJOR(dev);
- hello_minor = MINOR(dev);
-
-
- hello_dev = kmalloc(sizeof(struct hello_android_dev), GFP_KERNEL);
- if(!hello_dev) {
- err = -ENOMEM;
- printk(KERN_ALERT"Failed to alloc hello_dev.\n");
- goto unregister;
- }
-
-
- err = __hello_setup_dev(hello_dev);
- if(err) {
- printk(KERN_ALERT"Failed to setup dev: %d.\n", err);
- goto cleanup;
- }
-
-
- hello_class = class_create(THIS_MODULE, HELLO_DEVICE_CLASS_NAME);
- if(IS_ERR(hello_class)) {
- err = PTR_ERR(hello_class);
- printk(KERN_ALERT"Failed to create hello class.\n");
- goto destroy_cdev;
- }
-
-
- temp = device_create(hello_class, NULL, dev, "%s", HELLO_DEVICE_FILE_NAME);
- if(IS_ERR(temp)) {
- err = PTR_ERR(temp);
- printk(KERN_ALERT"Failed to create hello device.");
- goto destroy_class;
- }
-
-
- err = device_create_file(temp, &dev_attr_val);
- if(err < 0) {
- printk(KERN_ALERT"Failed to create attribute val.");
- goto destroy_device;
- }
-
- dev_set_drvdata(temp, hello_dev);
-
- printk(KERN_ALERT"Succedded to initialize hello device.\n");
- return 0;
-
- destroy_device:
- device_destroy(hello_class, dev);
-
- destroy_class:
- class_destroy(hello_class);
-
- destroy_cdev:
- cdev_del(&(hello_dev->dev));
-
- cleanup:
- kfree(hello_dev);
-
- unregister:
- unregister_chrdev_region(MKDEV(hello_major, hello_minor), 1);
-
- fail:
- return err;
- }
-
-
- static void __exit hello_exit(void) {
- dev_t devno = MKDEV(hello_major, hello_minor);
-
- printk(KERN_ALERT"Destroy hello device.\n");
-
-
- if(hello_class) {
- device_destroy(hello_class, MKDEV(hello_major, hello_minor));
- class_destroy(hello_class);
- }
-
-
- if(hello_dev) {
- cdev_del(&(hello_dev->dev));
- kfree(hello_dev);
- }
-
-
- unregister_chrdev_region(devno, 1);
- }
-
- MODULE_LICENSE("GPL");
- MODULE_DESCRIPTION("First Android Driver");
-
- module_init(hello_init);
- module_exit(hello_exit);
四.在hello目录中新增Kconfig和Makefile两个文件,其中Kconfig是在编译前执行配置命令make menuconfig时用到的,而Makefile是执行编译命令make是用到的:
Kconfig文件的内容
config HELLO
tristate "First Android Driver"
default n
help
This is the first android driver.
Makefile文件的内容
obj-$(CONFIG_HELLO) += hello.o
在Kconfig文件中,tristate表示编译选项HELLO支持在编译内核时,hello模块支持以模块、内建和不编译三种编译方法,默认是不编译,因此,在编译内核前,我们还需要执行make menuconfig命令来配置编译选项,使得hello可以以模块或者内建的方法进行编译。
在Makefile文件中,根据选项HELLO的值,执行不同的编译方法。
五. 修改drivers/kconfig文件,在menu "Device Drivers"和endmenu之间添加一行:
source "drivers/hello/Kconfig"
这样,执行make menuconfig时,就可以配置hello模块的编译选项了。.
六. 修改drivers/Makefile文件,添加一行:
obj-$(CONFIG_HELLO) += hello/
七. 配置编译选项:
USER-NAME@MACHINE-NAME:~/Android/kernel/common$ make menuconfig
找到"Device Drivers" => "First Android Drivers"选项,设置为y。
注意,如果内核不支持动态加载模块,这里不能选择m,虽然我们在Kconfig文件中配置了HELLO选项为tristate。要支持动态加载模块选项,必须要在配置菜单中选择Enable loadable module support选项;在支持动态卸载模块选项,必须要在Enable loadable module support菜单项中,选择Module unloading选项。
八. 编译:
USER-NAME@MACHINE-NAME:~/Android/kernel/common$ make
编译成功后,就可以在hello目录下看到hello.o文件了,这时候编译出来的zImage已经包含了hello驱动。
九.
编译和安装Android最新内核源代码,运行新编译的内核文件,验证hello驱动程序是否已经正常安装:
USER-NAME@MACHINE-NAME:~/Android$ emulator -kernel ./kernel/common/arch/arm/boot/zImage &
USER-NAME@MACHINE-NAME:~/Android$ adb shell
进入到dev目录,可以看到hello设备文件:
root@android:/ # cd dev
root@android:/dev # ls
进入到sys/class目录,可以看到hello目录:
root@android:/ # cd sys/class
root@android:/sys/class # ls
进入到hello目录,可以看到hello目录:
root@android:/sys/class # cd hello
root@android:/sys/class/hello # ls
root@android:/sys/class/hello # cd hello
root@android:/sys/class/hello/hello # ls
访问属性文件val的值:
root@android:/sys/class/hello/hello # cat val
5
root@android:/sys/class/hello/hello # echo '0' > val
root@android:/sys/class/hello/hello # cat val
0
至此,我们的hello内核驱动程序就完成了,并且验证了部分功能。接下来,通过自己编译的C语言程序来访问/dev/hello文件来和hello驱动程序交互;并验证/dev/hello驱动的正确性;
进入到Android源代码工程的external目录,创建hello目录:
USER-NAME@MACHINE-NAME:~/Android$ cd external
USER-NAME@MACHINE-NAME:~/Android/external$ mkdir hello
在hello目录中新建hello.c文件:
- #include <stdio.h>
- #include <stdlib.h>
- #include <fcntl.h>
- #define DEVICE_NAME "/dev/hello"
- int main(int argc, char** argv)
- {
- int fd = -1;
- int val = 0;
- fd = open(DEVICE_NAME, O_RDWR);
- if(fd == -1) {
- printf("Failed to open device %s.\n", DEVICE_NAME);
- return -1;
- }
-
- printf("Read original value:\n");
- read(fd, &val, sizeof(val));
- printf("%d.\n\n", val);
- val = 5;
- printf("Write value %d to %s.\n\n", val, DEVICE_NAME);
- write(fd, &val, sizeof(val));
-
- printf("Read the value again:\n");
- read(fd, &val, sizeof(val));
- printf("%d.\n\n", val);
- close(fd);
- return 0;
- }
这个程序的作用中,打开/dev/hello文件,然后先读出/dev/hello文件中的值,接着写入值5到/dev/hello中去,最后再次读出/dev/hello文件中的值,看看是否是我们刚才写入的值5。从/dev/hello文件读写的值实际上就是我们虚拟的硬件的寄存器val的值。
四. 在hello目录中新建Android.mk文件:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE_TAGS := optional
LOCAL_MODULE := hello
LOCAL_SRC_FILES := $(call all-subdir-c-files)
include $(BUILD_EXECUTABLE)
注意,BUILD_EXECUTABLE表示我们要编译的是可执行程序。
五. 参照如何单独编译Android源代码中的模块一文,使用mmm命令进行编译:
USER-NAME@MACHINE-NAME:~/Android$ mmm ./external/hello
编译成功后,就可以在out/target/product/gerneric/system/bin目录下,看到可执行文件hello了。
六. 重新打包Android系统文件system.img:
USER-NAME@MACHINE-NAME:~/Android$ make snod
这样,重新打包后的system.img文件就包含刚才编译好的hello可执行文件了。
七. 运行模拟器,使用/system/bin/hello可执行程序来访问Linux内核驱动程序:
USER-NAME@MACHINE-NAME:~/Android$ emulator -kernel ./kernel/common/arch/arm/boot/zImage &
USER-NAME@MACHINE-NAME:~/Android$ adb shell
root@android:/ # cd system/bin
root@android:/system/bin # ./hello
Read the original value:
0.
Write value 5 to /dev/hello.
Read the value again:
5.
看到这个结果,就说我们编写的C可执行程序可以访问我们编写的Linux内核驱动程序了。
本章结束。