矩阵分解
.1 Cholesky分解
函数 chol
格式 R = chol(X) %如果X为n阶对称正定矩阵,则存在一个实的非奇异上三角阵R,满足R'*R = X;若X非正定,则产生错误信息。
[R,p] = chol(X) %不产生任何错误信息,若X为正定阵,则p=0,R与上相同;若X非正定,则p为正整数,R是有序的上三角阵。
2 LU分解
矩阵的三角分解又称LU分解,它的目的是将一个矩阵分解成一个下三角矩阵L和一个上三角矩阵U的乘积,即A=LU。
函数 lu
格式 [L,U] = lu(X) %U为上三角阵,L为下三角阵或其变换形式,满足LU=X。
[L,U,P] = lu(X) %U为上三角阵,L为下三角阵,P为单位矩阵的行变换矩阵,满足LU=PX。
3 QR分解
将矩阵A分解成一个正交矩阵与一个上三角矩阵的乘积。
函数 qr
格式 [Q,R] = qr(A) %求得正交矩阵Q和上三角阵R,Q和R满足A=QR。
[Q,R,E] = qr(A) %求得正交矩阵Q和上三角阵R,E为单位矩阵的变换形式,R的对角线元素按大小降序排列,满足AE=QR。
[Q,R] = qr(A,0) %产生矩阵A的“经济大小”分解
[Q,R,E] = qr(A,0) %E的作用是使得R的对角线元素降序,且Q*R=A(:, E)。
R = qr(A) %稀疏矩阵A的分解,只产生一个上三角阵R,满足R'*R = A'*A,这种方法计算A'*A时减少了内在数字信息的损耗。
[C,R] = qr(A,b) %用于稀疏最小二乘问题:minimize||Ax-b||的两步解:[C,R] = qr(A,b),x = R\c。
R = qr(A,0) %针对稀疏矩阵A的经济型分解
[C,R] = qr(A,b,0) %针对稀疏最小二乘问题的经济型分解
函数 qrdelete
格式 [Q,R] = qrdelete(Q,R,j) %返回将矩阵A的第j列移去后的新矩阵的qr分解
函数 qrinsert
格式 [Q,R] = qrinsert(Q,R,j,x) %在矩阵A中第j列插入向量x后的新矩阵进行qr分解。若j大于A的列数,表示在A的最后插入列x。
4 特征值分解
函数 eig
格式 d = eig(A) %求矩阵A的特征值d,以向量形式存放d。
d = eig(A,B) %A、B为方阵,求广义特征值d,以向量形式存放d。
[V,D] = eig(A) %计算A的特征值对角阵D和特征向量V,使AV=VD成立。
[V,D] = eig(A,'nobalance') %当矩阵A中有与截断误差数量级相差不远的值时,该指令可能更精确。'nobalance'起误差调节作用。
[V,D] = eig(A,B) %计算广义特征值向量阵V和广义特征值阵D,满足AV=BVD。
[V,D] = eig(A,B,flag) % 由flag指定算法计算特征值D和特征向量V,flag的可能值为:'chol' 表示对B使用Cholesky分解算法,这里A为对称Hermitian矩阵,B为正定阵。'qz' 表示使用QZ算法,这里A、B为非对称或非Hermitian矩阵。
说明 一般特征值问题是求解方程: 解的问题。广义特征值问题是求方程: 解的问题。