在学习python的时候,刚开始接触生成器(generator)这个概念的时候,其实还是不太能理解,感觉并没有完全掌握,今天看到这篇文章的时候,感觉对这个概念真的是有了进一步的了解,感觉生成器和列表解析的关系似乎有点类似于range和xrange函数的关系一样,列表解析是将要处理得到的序列都先生成了,而生成器是要通过多次迭代才会生成整个序列,否则每次执行就只是生成其中一个;此外,函数中出现了yield关键字,该函数就是生成器函数了。
这篇文章转载自深入理解Python中的生成器,另外也可以看看廖雪峰老师的教程。
生成器(generator)概念
生成器不会把结果保存在一个系列中,而是保存生成器的状态,在每次进行迭代时返回一个值,直到遇到StopIteration异常结束。
生成器语法
1. 生成器表达式: 通列表解析语法,只不过把列表解析的[]换成()
生成器表达式能做的事情列表解析基本都能处理,只不过在需要处理的序列比较大时,列表解析比较费内存。
>>> gen = (x**2 for x in range(5))
>>> gen
<generator object <genexpr> at 0x0000000002FB7B40>
>>> for g in gen:
... print(g, end='-')
...
0-1-4-9-16-
>>> for x in [0,1,2,3,4,5]:
... print(x, end='-')
...
0-1-2-3-4-5-
下面为一个可以无穷生产奇数的生成器函数。
def odd():
n=1
while True:
yield n
n+=2
odd_num = odd()
count = 0
for o in odd_num:
if count >=5: break
print(o)
count +=1
当然通过手动编写迭代器可以实现类似的效果,只不过生成器更加直观易懂
class Iter:
def __init__(self):
self.start=-1
def __iter__(self):
return self
def __next__(self):
self.start +=2
return self.start
I = Iter()
for count in range(5):
print(next(I))
题外话: 生成器是包含有iter()和next()方法的,所以可以直接使用for来迭代,而没有包含StopIteration的自编Iter来只能通过手动循环来迭代。
>>> from collections import Iterable
>>> from collections import Iterator
>>> isinstance(odd_num, Iterable)
True
>>> isinstance(odd_num, Iterator)
True
>>> iter(odd_num) is odd_num
True
>>> help(odd_num)
Help on generator object:
odd = class generator(object)
| Methods defined here:
|
| __iter__(self, /)
| Implement iter(self).
|
| __next__(self, /)
| Implement next(self).
……
看到上面的结果,现在你可以很有信心的按照Iterator的方式进行循环了吧!
在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。
yield 与 return
在一个生成器中,如果没有return,则默认执行到函数完毕时返回StopIteration;
>>> def g1():
... yield 1
...
>>> g=g1()
>>> next(g) #第一次调用next(g)时,会在执行完yield语句后挂起,所以此时程序并没有执行结束。
1
>>> next(g) #程序试图从yield语句的下一条语句开始执行,发现已经到了结尾,所以抛出StopIteration异常。
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
>>>
如果遇到return,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。
>>> def g2():
... yield 'a'
... return
... yield 'b'
...
>>> g=g2()
>>> next(g) #程序停留在执行完yield 'a'语句后的位置。
'a'
>>> next(g) #程序发现下一条语句是return,所以抛出StopIteration异常,这样yield 'b'语句永远也不会执行。
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
如果在return后返回一个值,那么这个值为StopIteration异常的说明,不是程序的返回值。
生成器没有办法使用return来返回值。
>>> def g3():
... yield 'hello'
... return 'world'
...
>>> g=g3()
>>> next(g)
'hello'
>>> next(g)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration: world
生成器支持的方法
>>> help(odd_num)
Help on generator object:
odd = class generator(object)
| Methods defined here:
......
| close(...)
| close() -> raise GeneratorExit inside generator.
|
| send(...)
| send(arg) -> send 'arg' into generator,
| return next yielded value or raise StopIteration.
|
| throw(...)
| throw(typ[,val[,tb]]) -> raise exception in generator,
| return next yielded value or raise StopIteration.
close()
手动关闭生成器函数,后面的调用会直接返回StopIteration异常。
>>> def g4():
... yield 1
... yield 2
... yield 3
...
>>> g=g4()
>>> next(g)
1
>>> g.close()
>>> next(g) #关闭后,yield 2和yield 3语句将不再起作用
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
send()
生成器函数最大的特点是可以接受外部传入的一个变量,并根据变量内容计算结果后返回。
这是生成器函数最难理解的地方,也是最重要的地方,实现后面我会讲到的协程就全靠它了。
def gen():
value=0
while True:
receive=yield value
if receive=='e':
break
value = 'got: %s' % receive
g=gen()
print(g.send(None))
print(g.send('aaa'))
print(g.send(3))
print(g.send('e'))
执行流程:
通过g.send(3),会重复第2步,最后输出结果为”got: 3”
当我们g.send(‘e’)时,程序会执行break然后推出循环,最后整个函数执行完毕,所以会得到StopIteration异常。
最后的执行结果如下:
0
got: aaa
got: 3
Traceback (most recent call last):
File "h.py", line 14, in <module>
print(g.send('e'))
StopIteration
throw()
用来向生成器函数送入一个异常,可以结束系统定义的异常,或者自定义的异常。
throw()后直接跑出异常并结束程序,或者消耗掉一个yield,或者在没有下一个yield的时候直接进行到程序的结尾。
def gen():
while True:
try:
yield 'normal value'
yield 'normal value 2'
print('here')
except ValueError:
print('we got ValueError here')
except TypeError:
break
g=gen()
print(next(g))
print(g.throw(ValueError))
print(next(g))
print(g.throw(TypeError))
输出结果为:
normal value
we got ValueError here
normal value
normal value 2
Traceback (most recent call last):
File "h.py", line 15, in <module>
print(g.throw(TypeError))
StopIteration
解释:
def flatten(nested):
try:
#如果是字符串,那么手动抛出TypeError。
if isinstance(nested, str):
raise TypeError
for sublist in nested:
#yield flatten(sublist)
for element in flatten(sublist):
#yield element
print('got:', element)
except TypeError:
#print('here')
yield nested
L=['aaadf',[1,2,3],2,4,[5,[6,[8,[9]],'ddf'],7]]
for num in flatten(L):
print(num)
如果理解起来有点困难,那么把print语句的注释打开在进行查看就比较明了了。
总结