LintCode -- minimum-path-sum(最小路径和)
原题链接:http://www.lintcode.com/zh-cn/problem/minimum-path-sum/
给定一个只含非负整数的m*n网格,找到一条从左上角到右下角的可以使数字和最小的路径。
你在同一时间只能向下或者向右移动一步
分析:
dp[ i+1 ][ j+1 ] = min( dp [ i+1 ][ j ] , dp[ i ][ j+1 ] ) + grid[ i ][ j ]
**** 时间复杂度 O(n*m), 空间复杂度 O(n*m) ****
代码(C++、Java、Python):
class Solution { public: /** * @param grid: a list of lists of integers. * @return: An integer, minimizes the sum of all numbers along its path */ int min(int a, int b){ if (a < b) return a; else return b; } int minPathSum(vector<vector<int> > &grid) { // write your code here int m = grid.size(); int n = grid[0].size(); int dp[m][n]; dp[0][0] = grid[0][0]; for (int i = 1; i < m; i++) dp[i][0] = dp[i-1][0] + grid[i][0]; for (int j = 1; j < n; j++) dp[0][j] = dp[0][j-1] + grid[0][j]; for (int i = 1; i < m; i++) for (int j = 1; j < n; j++) dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]; return dp[m-1][n-1]; } };
public class Solution { /** * @param grid: a list of lists of integers. * @return: An integer, minimizes the sum of all numbers along its path */ int min(int a, int b){ if (a < b) return a; else return b; } public int minPathSum(int[][] grid) { // write your code here int m = grid.length; int n = grid[0].length; int [][] dp = new int [m][n]; dp[0][0] = grid[0][0]; for (int i = 1; i < m; i++) dp[i][0] = dp[i-1][0] + grid[i][0]; for (int j = 1; j < n; j++) dp[0][j] = dp[0][j-1] + grid[0][j]; for (int i = 1; i < m; i++) for (int j = 1; j < n; j++) dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]; return dp[m-1][n-1]; } }
class Solution: """ @param grid: a list of lists of integers. @return: An integer, minimizes the sum of all numbers along its path """ def minPathSum(self, grid): # write your code here m = len(grid) n = len(grid[0]) dp = [[0 for i in range(n)] for j in range(m)] dp[0][0] = grid[0][0] for i in range(1, m): dp[i][0] = dp[i-1][0] + grid[i][0] for j in range(1, n): dp[0][j] = dp[0][j-1] + grid[0][j] for i in range(1, m): for j in range(1, n): dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j] return dp[m-1][n-1] def min(a, b): if a < b: return a else: return b